000186452 001__ 186452
000186452 005__ 20240229145746.0
000186452 0247_ $$2doi$$a10.1016/j.neuron.2022.12.005
000186452 0247_ $$2pmid$$apmid:36549270
000186452 0247_ $$2ISSN$$a0896-6273
000186452 0247_ $$2ISSN$$a1097-4199
000186452 0247_ $$2altmetric$$aaltmetric:140395041
000186452 037__ $$aDKFZ-2022-03173
000186452 041__ $$aEnglish
000186452 082__ $$a610
000186452 1001_ $$aVieira, José Ricardo$$b0
000186452 245__ $$aEndothelial PlexinD1 signaling instructs spinal cord vascularization and motor neuron development.
000186452 260__ $$aNew York, NY$$bElsevier$$c2022
000186452 3367_ $$2DRIVER$$aarticle
000186452 3367_ $$2DataCite$$aOutput Types/Journal article
000186452 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1672317401_31235
000186452 3367_ $$2BibTeX$$aARTICLE
000186452 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000186452 3367_ $$00$$2EndNote$$aJournal Article
000186452 520__ $$aHow the vascular and neural compartment cooperate to achieve such a complex and highly specialized structure as the central nervous system is still unclear. Here, we reveal a crosstalk between motor neurons (MNs) and endothelial cells (ECs), necessary for the coordinated development of MNs. By analyzing cell-to-cell interaction profiles of the mouse developing spinal cord, we uncovered semaphorin 3C (Sema3C) and PlexinD1 as a communication axis between MNs and ECs. Using cell-specific knockout mice and in vitro assays, we demonstrate that removal of Sema3C in MNs, or its receptor PlexinD1 in ECs, results in premature and aberrant vascularization of MN columns. Those vascular defects impair MN axon exit from the spinal cord. Impaired PlexinD1 signaling in ECs also causes MN maturation defects at later stages. This study highlights the importance of a timely and spatially controlled communication between MNs and ECs for proper spinal cord development.
000186452 536__ $$0G:(DE-HGF)POF4-311$$a311 - Zellbiologie und Tumorbiologie (POF4-311)$$cPOF4-311$$fPOF IV$$x0
000186452 588__ $$aDataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de
000186452 650_7 $$2Other$$aCNS vascularization
000186452 650_7 $$2Other$$aPlexinD1
000186452 650_7 $$2Other$$aSema3C
000186452 650_7 $$2Other$$ablood vessel
000186452 650_7 $$2Other$$aendothelial cell
000186452 650_7 $$2Other$$amotor neuron
000186452 650_7 $$2Other$$aneuro-vascular communication
000186452 650_7 $$2Other$$aneurodevelopment
000186452 650_7 $$2Other$$aspinal cord
000186452 650_2 $$2MeSH$$aAnimals
000186452 650_2 $$2MeSH$$aMice
000186452 650_2 $$2MeSH$$aEndothelial Cells
000186452 650_2 $$2MeSH$$aMotor Neurons: physiology
000186452 650_2 $$2MeSH$$aSpinal Cord
000186452 650_2 $$2MeSH$$aSignal Transduction
000186452 650_2 $$2MeSH$$aAxons
000186452 650_2 $$2MeSH$$aMice, Knockout
000186452 7001_ $$aShah, Bhavin$$b1
000186452 7001_ $$aDupraz, Sebastian$$b2
000186452 7001_ $$aParedes, Isidora$$b3
000186452 7001_ $$aHimmels, Patricia$$b4
000186452 7001_ $$aSchermann, Géza$$b5
000186452 7001_ $$aAdler, Heike$$b6
000186452 7001_ $$aMotta, Alessia$$b7
000186452 7001_ $$aGärtner, Lea$$b8
000186452 7001_ $$aNavarro-Aragall, Ariadna$$b9
000186452 7001_ $$aIoannou, Elena$$b10
000186452 7001_ $$aDyukova, Elena$$b11
000186452 7001_ $$aBonnavion, Remy$$b12
000186452 7001_ $$0P:(DE-He78)039283a5d51058ec79156d0ef67132da$$aFischer, Andreas$$b13$$udkfz
000186452 7001_ $$aBonanomi, Dario$$b14
000186452 7001_ $$aBradke, Frank$$b15
000186452 7001_ $$aRuhrberg, Christiana$$b16
000186452 7001_ $$aRuiz de Almodóvar, Carmen$$b17
000186452 773__ $$0PERI:(DE-600)2001944-0$$a10.1016/j.neuron.2022.12.005$$gVol. 110, no. 24, p. 4074 - 4089.e6$$n24$$p4074 - 4089.e6$$tNeuron$$v110$$x0896-6273$$y2022
000186452 909CO $$ooai:inrepo02.dkfz.de:186452$$pVDB
000186452 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)039283a5d51058ec79156d0ef67132da$$aDeutsches Krebsforschungszentrum$$b13$$kDKFZ
000186452 9131_ $$0G:(DE-HGF)POF4-311$$1G:(DE-HGF)POF4-310$$2G:(DE-HGF)POF4-300$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lKrebsforschung$$vZellbiologie und Tumorbiologie$$x0
000186452 9141_ $$y2022
000186452 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2022-11-16$$wger
000186452 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2022-11-16
000186452 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2022-11-16
000186452 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2022-11-16
000186452 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2022-11-16
000186452 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2022-11-16
000186452 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2022-11-16
000186452 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2022-11-16
000186452 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2022-11-16
000186452 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bNEURON : 2021$$d2022-11-16
000186452 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2022-11-16
000186452 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2022-11-16
000186452 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2022-11-16
000186452 915__ $$0StatID:(DE-HGF)9915$$2StatID$$aIF >= 15$$bNEURON : 2021$$d2022-11-16
000186452 9201_ $$0I:(DE-He78)A270-20160331$$kA270$$lA270 Vaskuläre Signaltransduktion und Krebs$$x0
000186452 980__ $$ajournal
000186452 980__ $$aVDB
000186452 980__ $$aI:(DE-He78)A270-20160331
000186452 980__ $$aUNRESTRICTED