Home > Publications database > Dietary Intake of 91 Individual Polyphenols and 5-Year Body Weight Change in the EPIC-PANACEA Cohort. > print |
001 | 186465 | ||
005 | 20240229145747.0 | ||
024 | 7 | _ | |a 10.3390/antiox11122425 |2 doi |
024 | 7 | _ | |a pmid:36552633 |2 pmid |
024 | 7 | _ | |a pmc:PMC9774775 |2 pmc |
024 | 7 | _ | |a altmetric:139900564 |2 altmetric |
037 | _ | _ | |a DKFZ-2022-03186 |
041 | _ | _ | |a English |
082 | _ | _ | |a 610 |
100 | 1 | _ | |a Gil-Lespinard, Mercedes |b 0 |
245 | _ | _ | |a Dietary Intake of 91 Individual Polyphenols and 5-Year Body Weight Change in the EPIC-PANACEA Cohort. |
260 | _ | _ | |a Basel |c 2022 |b MDPI |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1672317102_31235 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a Polyphenols are bioactive compounds from plants with antioxidant properties that may have a protective role against body weight gain, with adipose tissue and systemic oxidative stress as potential targets. We aimed to investigate the dietary intake of individual polyphenols and their association with 5-year body weight change in a sub-cohort of the European Prospective Investigation into Cancer and Nutrition (EPIC). This study included 349,165 adult participants from nine European countries. Polyphenol intake was estimated through country-specific validated dietary questionnaires and the Phenol-Explorer database. Body weight was obtained at recruitment and after a mean follow-up time of 5 years. Associations were estimated using multilevel mixed linear regression models. From 91 polyphenols included, the majority (n = 67) were inversely associated with 5-year body weight change after FDR-correction (q < 0.05). The greatest inverse associations were observed for quercetin 3-O-rhamnoside (change in weight for doubling in intake: -0.071 (95% CI: -0.085; -0.056) kg/5 years). Only 13 polyphenols showed positive associations with body weight gain, mainly from the subclass hydroxycinnamic acids (HCAs) with coffee as the main dietary source, such as 4-caffeoylquinic acid (0.029 (95% CI: 0.021; 0.038) kg/5 years). Individual polyphenols with fruit, tea, cocoa and whole grain cereals as the main dietary sources may contribute to body weight maintenance in adults. Individual HCAs may have different roles in body weight change depending on their dietary source. |
536 | _ | _ | |a 313 - Krebsrisikofaktoren und Prävention (POF4-313) |0 G:(DE-HGF)POF4-313 |c POF4-313 |f POF IV |x 0 |
588 | _ | _ | |a Dataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de |
650 | _ | 7 | |a EPIC |2 Other |
650 | _ | 7 | |a body weight |2 Other |
650 | _ | 7 | |a cohort |2 Other |
650 | _ | 7 | |a intake |2 Other |
650 | _ | 7 | |a obesity |2 Other |
650 | _ | 7 | |a polyphenol |2 Other |
700 | 1 | _ | |a Castañeda, Jazmín |b 1 |
700 | 1 | _ | |a Almanza-Aguilera, Enrique |0 0000-0002-4805-0774 |b 2 |
700 | 1 | _ | |a Gómez, Jesús Humberto |b 3 |
700 | 1 | _ | |a Tjønneland, Anne |b 4 |
700 | 1 | _ | |a Kyrø, Cecilie |0 0000-0002-9083-8960 |b 5 |
700 | 1 | _ | |a Overvad, Kim |b 6 |
700 | 1 | _ | |a Katzke, Verena |0 P:(DE-He78)fb68a9386399d72d84f7f34cfc6048b4 |b 7 |u dkfz |
700 | 1 | _ | |a Schulze, Matthias B |b 8 |
700 | 1 | _ | |a Masala, Giovanna |0 0000-0002-5758-9069 |b 9 |
700 | 1 | _ | |a Agnoli, Claudia |b 10 |
700 | 1 | _ | |a Santucci de Magistris, Maria |b 11 |
700 | 1 | _ | |a Tumino, Rosario |0 0000-0003-2666-414X |b 12 |
700 | 1 | _ | |a Sacerdote, Carlotta |0 0000-0002-8008-5096 |b 13 |
700 | 1 | _ | |a Skeie, Guri |0 0000-0003-2476-4251 |b 14 |
700 | 1 | _ | |a Lasheras, Cristina |b 15 |
700 | 1 | _ | |a Molina-Montes, Esther |0 0000-0002-0428-2426 |b 16 |
700 | 1 | _ | |a Huerta, José María |0 0000-0002-9637-3869 |b 17 |
700 | 1 | _ | |a Barricarte, Aurelio |b 18 |
700 | 1 | _ | |a Amiano, Pilar |b 19 |
700 | 1 | _ | |a Sonestedt, Emily |0 0000-0002-0747-4562 |b 20 |
700 | 1 | _ | |a da Silva, Marisa |0 0000-0003-1215-8625 |b 21 |
700 | 1 | _ | |a Johansson, Ingegerd |0 0000-0002-9227-8434 |b 22 |
700 | 1 | _ | |a Hultdin, Johan |0 0000-0002-9599-0961 |b 23 |
700 | 1 | _ | |a May, Anne M |b 24 |
700 | 1 | _ | |a Forouhi, Nita G |b 25 |
700 | 1 | _ | |a Heath, Alicia K |0 0000-0001-6517-1300 |b 26 |
700 | 1 | _ | |a Freisling, Heinz |0 0000-0001-8648-4998 |b 27 |
700 | 1 | _ | |a Weiderpass, Elisabete |0 0000-0003-2237-0128 |b 28 |
700 | 1 | _ | |a Scalbert, Augustin |b 29 |
700 | 1 | _ | |a Zamora-Ros, Raul |0 0000-0002-6236-6804 |b 30 |
773 | _ | _ | |a 10.3390/antiox11122425 |g Vol. 11, no. 12, p. 2425 - |0 PERI:(DE-600)2704216-9 |n 12 |p 2425 |t Antioxidants |v 11 |y 2022 |x 2076-3921 |
909 | C | O | |o oai:inrepo02.dkfz.de:186465 |p VDB |
910 | 1 | _ | |a Deutsches Krebsforschungszentrum |0 I:(DE-588b)2036810-0 |k DKFZ |b 7 |6 P:(DE-He78)fb68a9386399d72d84f7f34cfc6048b4 |
913 | 1 | _ | |a DE-HGF |b Gesundheit |l Krebsforschung |1 G:(DE-HGF)POF4-310 |0 G:(DE-HGF)POF4-313 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-300 |4 G:(DE-HGF)POF |v Krebsrisikofaktoren und Prävention |x 0 |
914 | 1 | _ | |y 2022 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2022-11-11 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2022-11-11 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0501 |2 StatID |b DOAJ Seal |d 2022-01-12T13:05:11Z |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0500 |2 StatID |b DOAJ |d 2022-01-12T13:05:11Z |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b DOAJ : Blind peer review |d 2022-01-12T13:05:11Z |
915 | _ | _ | |a Creative Commons Attribution CC BY (No Version) |0 LIC:(DE-HGF)CCBYNV |2 V:(DE-HGF) |b DOAJ |d 2022-01-12T13:05:11Z |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2022-11-11 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1190 |2 StatID |b Biological Abstracts |d 2022-11-11 |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2022-11-11 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2022-11-11 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1050 |2 StatID |b BIOSIS Previews |d 2022-11-11 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2022-11-11 |
915 | _ | _ | |a Article Processing Charges |0 StatID:(DE-HGF)0561 |2 StatID |d 2022-11-11 |
915 | _ | _ | |a Fees |0 StatID:(DE-HGF)0700 |2 StatID |d 2022-11-11 |
920 | 1 | _ | |0 I:(DE-He78)C020-20160331 |k C020 |l C020 Epidemiologie von Krebs |x 0 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a I:(DE-He78)C020-20160331 |
980 | _ | _ | |a UNRESTRICTED |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|