001     212549
005     20240229154914.0
024 7 _ |a 10.1111/all.15658
|2 doi
024 7 _ |a pmid:36704932
|2 pmid
024 7 _ |a 0105-4538
|2 ISSN
024 7 _ |a 0001-5148
|2 ISSN
024 7 _ |a 1398-9995
|2 ISSN
024 7 _ |a altmetric:141851242
|2 altmetric
037 _ _ |a DKFZ-2023-00234
041 _ _ |a English
082 _ _ |a 610
100 1 _ |a Thürmann, Loreen
|b 0
245 _ _ |a Global hypomethylation in childhood asthma identified by genome-wide DNA-methylation sequencing preferentially affects enhancer regions.
260 _ _ |a Oxford
|c 2023
|b Wiley
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1686144552_31666
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a 2023 Jun;78(6):1489-1506
520 _ _ |a Childhood asthma is a result of a complex interaction of genetic and environmental components causing epigenetic and immune dysregulation, airway inflammation and impaired lung function. Although different microarray based EWAS studies have been conducted, the impact of epigenetic regulation in asthma development is still widely unknown. We have therefore applied unbiased whole genome bisulfite sequencing (WGBS) to characterize global DNA-methylation profiles of asthmatic children compared to healthy controls.Peripheral blood samples of 40 asthmatic and 42 control children aged 5-15 years from three birth cohorts were sequenced together with paired cord blood samples. Identified differentially methylated regions (DMRs) were categorized in genotype-associated, cell-type-dependent, or prenatally-primed. Network analysis and subsequent natural language processing of DMR-associated genes was complemented by targeted analysis of functional translation of epigenetic regulation on the transcriptional and protein level.In total, 158 DMRs were identified in asthmatic children compared to controls of which 37% were related to the eosinophil content. A global hypomethylation was identified affecting predominantly enhancer regions and regulating key immune genes such as IL4, IL5RA, and EPX. These DMRs were confirmed in n=267 samples and could be linked to aberrant gene expression. Out of the 158 DMRs identified in the established phenotype, 56 were perturbed already at birth and linked, at least in part, to prenatal influences such as tobacco smoke exposure or phthalate exposure.This is the first epigenetic study based on whole genome sequencing to identify marked dysregulation of enhancer regions as a hallmark of childhood asthma.
536 _ _ |a 312 - Funktionelle und strukturelle Genomforschung (POF4-312)
|0 G:(DE-HGF)POF4-312
|c POF4-312
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de
650 _ 7 |a DNA-methylation
|2 Other
650 _ 7 |a asthma
|2 Other
650 _ 7 |a cord blood
|2 Other
650 _ 7 |a prenatal exposure
|2 Other
700 1 _ |a Klös, Matthias
|b 1
700 1 _ |a Mackowiak, Sebastian D
|0 0000-0003-1673-5389
|b 2
700 1 _ |a Bieg, Matthias
|b 3
700 1 _ |a Bauer, Tobias
|0 P:(DE-He78)ba69542e8644b99720d1446ad757efa8
|b 4
700 1 _ |a Ishaque, Naveed
|b 5
700 1 _ |a Messingschlager, Marey
|0 0000-0002-7316-8192
|b 6
700 1 _ |a Herrmann, Carl
|b 7
700 1 _ |a Röder, Stefan
|b 8
700 1 _ |a Bauer, Mario
|0 0000-0001-5752-038X
|b 9
700 1 _ |a Schäuble, Sascha
|b 10
700 1 _ |a Faessler, Erik
|b 11
700 1 _ |a Hahn, Udo
|b 12
700 1 _ |a Weichenhan, Dieter
|0 P:(DE-He78)ff4024f7bc236e7897d9c18ee19c451f
|b 13
|u dkfz
700 1 _ |a Mücke, Oliver
|0 P:(DE-He78)aaef108f2a1ba0a78fff60ac60d3368c
|b 14
|u dkfz
700 1 _ |a Plass, Christoph
|0 P:(DE-He78)4301875630bc997edf491c694ae1f8a9
|b 15
|u dkfz
700 1 _ |a Borte, Michael
|b 16
700 1 _ |a von Mutius, Erika
|b 17
700 1 _ |a Stangl, Gabriele I
|b 18
700 1 _ |a Lauener, Roger
|b 19
700 1 _ |a Karvonen, Anne M
|b 20
700 1 _ |a Divaret-Chauveau, Amandine
|0 0000-0002-2492-9864
|b 21
700 1 _ |a Riedler, Josef
|b 22
700 1 _ |a Heinrich, Joachim
|0 0000-0002-9620-1629
|b 23
700 1 _ |a Standl, Marie
|0 0000-0002-5345-2049
|b 24
700 1 _ |a von Berg, Andrea
|b 25
700 1 _ |a Schaaf, Beate
|b 26
700 1 _ |a Herberth, Gunda
|b 27
700 1 _ |a Kabesch, Michael
|b 28
700 1 _ |a Eils, Roland
|b 29
700 1 _ |a Trump, Saskia
|b 30
700 1 _ |a Lehmann, Irina
|b 31
773 _ _ |a 10.1111/all.15658
|g p. all.15658
|0 PERI:(DE-600)2003114-2
|n 6
|p 1489-1506
|t Allergy
|v 78
|y 2023
|x 0105-4538
909 C O |p VDB
|o oai:inrepo02.dkfz.de:212549
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 4
|6 P:(DE-He78)ba69542e8644b99720d1446ad757efa8
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 13
|6 P:(DE-He78)ff4024f7bc236e7897d9c18ee19c451f
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 14
|6 P:(DE-He78)aaef108f2a1ba0a78fff60ac60d3368c
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 15
|6 P:(DE-He78)4301875630bc997edf491c694ae1f8a9
913 1 _ |a DE-HGF
|b Gesundheit
|l Krebsforschung
|1 G:(DE-HGF)POF4-310
|0 G:(DE-HGF)POF4-312
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Funktionelle und strukturelle Genomforschung
|x 0
914 1 _ |y 2023
915 _ _ |a DEAL Wiley
|0 StatID:(DE-HGF)3001
|2 StatID
|d 2022-11-10
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2022-11-10
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2022-11-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2022-11-10
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2023-10-22
|w ger
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b ALLERGY : 2022
|d 2023-10-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2023-10-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2023-10-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2023-10-22
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2023-10-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2023-10-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2023-10-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2023-10-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2023-10-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1110
|2 StatID
|b Current Contents - Clinical Medicine
|d 2023-10-22
915 _ _ |a IF >= 10
|0 StatID:(DE-HGF)9910
|2 StatID
|b ALLERGY : 2022
|d 2023-10-22
920 1 _ |0 I:(DE-He78)B080-20160331
|k B080
|l Theoretische Bioinformatik
|x 0
920 1 _ |0 I:(DE-He78)B370-20160331
|k B370
|l Epigenomik
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)B080-20160331
980 _ _ |a I:(DE-He78)B370-20160331
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21