Journal Article DKFZ-2023-00234

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Global hypomethylation in childhood asthma identified by genome-wide DNA-methylation sequencing preferentially affects enhancer regions.

 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;

2023
Wiley Oxford

Allergy 78(6), 1489-1506 () [10.1111/all.15658]
 GO

This record in other databases:  

Please use a persistent id in citations: doi:

Abstract: Childhood asthma is a result of a complex interaction of genetic and environmental components causing epigenetic and immune dysregulation, airway inflammation and impaired lung function. Although different microarray based EWAS studies have been conducted, the impact of epigenetic regulation in asthma development is still widely unknown. We have therefore applied unbiased whole genome bisulfite sequencing (WGBS) to characterize global DNA-methylation profiles of asthmatic children compared to healthy controls.Peripheral blood samples of 40 asthmatic and 42 control children aged 5-15 years from three birth cohorts were sequenced together with paired cord blood samples. Identified differentially methylated regions (DMRs) were categorized in genotype-associated, cell-type-dependent, or prenatally-primed. Network analysis and subsequent natural language processing of DMR-associated genes was complemented by targeted analysis of functional translation of epigenetic regulation on the transcriptional and protein level.In total, 158 DMRs were identified in asthmatic children compared to controls of which 37% were related to the eosinophil content. A global hypomethylation was identified affecting predominantly enhancer regions and regulating key immune genes such as IL4, IL5RA, and EPX. These DMRs were confirmed in n=267 samples and could be linked to aberrant gene expression. Out of the 158 DMRs identified in the established phenotype, 56 were perturbed already at birth and linked, at least in part, to prenatal influences such as tobacco smoke exposure or phthalate exposure.This is the first epigenetic study based on whole genome sequencing to identify marked dysregulation of enhancer regions as a hallmark of childhood asthma.

Keyword(s): DNA-methylation ; asthma ; cord blood ; prenatal exposure

Classification:

Note: 2023 Jun;78(6):1489-1506

Contributing Institute(s):
  1. Theoretische Bioinformatik (B080)
  2. Epigenomik (B370)
Research Program(s):
  1. 312 - Funktionelle und strukturelle Genomforschung (POF4-312) (POF4-312)

Appears in the scientific report 2023
Database coverage:
Medline ; BIOSIS Previews ; Biological Abstracts ; Clarivate Analytics Master Journal List ; Current Contents - Clinical Medicine ; Current Contents - Life Sciences ; DEAL Wiley ; Ebsco Academic Search ; Essential Science Indicators ; IF >= 10 ; JCR ; NationallizenzNationallizenz ; SCOPUS ; Science Citation Index Expanded ; Web of Science Core Collection
Click to display QR Code for this record

The record appears in these collections:
Document types > Articles > Journal Article
Public records
Publications database

 Record created 2023-01-31, last modified 2024-02-29



Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)