000265117 001__ 265117
000265117 005__ 20240229162313.0
000265117 0247_ $$2doi$$a10.2967/jnumed.122.264338
000265117 0247_ $$2pmid$$apmid:35981898
000265117 0247_ $$2ISSN$$a0097-9058
000265117 0247_ $$2ISSN$$a0022-3123
000265117 0247_ $$2ISSN$$a0161-5505
000265117 0247_ $$2ISSN$$a1535-5667
000265117 0247_ $$2ISSN$$a2159-662X
000265117 0247_ $$2altmetric$$aaltmetric:134755441
000265117 037__ $$aDKFZ-2023-00279
000265117 041__ $$aEnglish
000265117 082__ $$a610
000265117 1001_ $$0P:(DE-HGF)0$$aKersting, David$$b0
000265117 245__ $$aLesion Quantification Accuracy of Digital 90Y PET Imaging in the Context of Dosimetry in Systemic Fibroblast Activation Protein Inhibitor Radionuclide Therapy.
000265117 260__ $$aNew York, NY$$bSoc.$$c2023
000265117 3367_ $$2DRIVER$$aarticle
000265117 3367_ $$2DataCite$$aOutput Types/Journal article
000265117 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1675679895_31407
000265117 3367_ $$2BibTeX$$aARTICLE
000265117 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000265117 3367_ $$00$$2EndNote$$aJournal Article
000265117 520__ $$aTherapy with 90Y-labeled fibroblast activation protein inhibitors (90Y-FAPIs) was recently introduced as a novel treatment concept for patients with solid tumors. Lesion and organ-at-risk dosimetry is part of assessing treatment efficacy and safety and requires reliable quantification of tissue uptake. As 90Y quantification is limited by the low internal positron-electron pair conversion rate, the increased effective sensitivity of digital silicon photomultiplier-based PET/CT systems might increase quantification accuracy and, consequently, allow for dosimetry in 90Y-FAPI therapy. The aim of this study was to explore the conditions for reliable lesion image quantification in 90Y-FAPI radionuclide therapy using a digital PET/CT system. Methods: Two tumor phantoms were filled with 90Y solution using different sphere activity concentrations and a constant signal-to-background ratio of 40. The minimum detectable activity concentration was determined, and its dependence on acquisition time (15 vs. 30 min per bed position) and smoothing levels (all-pass vs. 5-mm gaussian filter) was investigated. Quantification accuracy was evaluated at various activity concentrations to estimate the minimum quantifiable activity concentration using contour-based and oversized volume-of-interest-based quantification approaches. A ±20% deviation range between image-derived and true activity concentrations was regarded as acceptable. Tumor dosimetry for 3 patients treated with 90Y-FAPI is presented to project the phantom results to clinical scenarios. Results: For a lesion size of 40 mm and a clinical acquisition time of 15 min, both minimum detectable and minimum quantifiable activity concentrations were 0.12 MBq/mL. For lesion sizes of greater than or equal to 30 mm, accurate quantification was feasible for detectable lesions. Only for the smallest 10-mm sphere, the minimum detectable and minimum quantifiable activity concentrations differ substantially (0.43 vs. 1.97 MBq/mL). No notable differences between the 2 quantification approaches were observed. For the investigated tumors, absorbed dose estimates with reliable accuracy were achievable. Conclusion: For lesion sizes and activity concentrations that are expected to be observed in patients treated with 90Y-FAPI, quantification with reasonable accuracy is possible. Further dosimetry studies are needed to thoroughly investigate the efficacy and safety of 90Y-FAPI therapy.
000265117 536__ $$0G:(DE-HGF)POF4-899$$a899 - ohne Topic (POF4-899)$$cPOF4-899$$fPOF IV$$x0
000265117 588__ $$aDataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de
000265117 650_7 $$2Other$$a90Y
000265117 650_7 $$2Other$$aFAPI therapy
000265117 650_7 $$2Other$$aPET
000265117 650_7 $$2Other$$aminimum detectable activity
000265117 650_7 $$2Other$$aquantification accuracy
000265117 650_7 $$2NLM Chemicals$$aYttrium Radioisotopes
000265117 650_7 $$2NLM Chemicals$$aGallium Radioisotopes
000265117 650_2 $$2MeSH$$aHumans
000265117 650_2 $$2MeSH$$aPositron Emission Tomography Computed Tomography
000265117 650_2 $$2MeSH$$aYttrium Radioisotopes: therapeutic use
000265117 650_2 $$2MeSH$$aPositron-Emission Tomography: methods
000265117 650_2 $$2MeSH$$aNeoplasms: diagnostic imaging
000265117 650_2 $$2MeSH$$aNeoplasms: radiotherapy
000265117 650_2 $$2MeSH$$aNeoplasms: drug therapy
000265117 650_2 $$2MeSH$$aFibroblasts
000265117 650_2 $$2MeSH$$aGallium Radioisotopes
000265117 7001_ $$0P:(DE-HGF)0$$aJentzen, Walter$$b1
000265117 7001_ $$0P:(DE-HGF)0$$aJeromin, Daniel$$b2
000265117 7001_ $$0P:(DE-HGF)0$$aMavroeidi, Ilektra-Antonia$$b3
000265117 7001_ $$aConti, Maurizio$$b4
000265117 7001_ $$aBüther, Florian$$b5
000265117 7001_ $$0P:(DE-HGF)0$$aHerrmann, Ken$$b6
000265117 7001_ $$0P:(DE-HGF)0$$aRischpler, Christoph$$b7
000265117 7001_ $$0P:(DE-HGF)0$$aHamacher, Rainer$$b8
000265117 7001_ $$0P:(DE-HGF)0$$aFendler, Wolfgang P$$b9
000265117 7001_ $$0P:(DE-HGF)0$$aSeifert, Robert$$b10
000265117 7001_ $$0P:(DE-HGF)0$$aCosta, Pedro Fragoso$$b11
000265117 773__ $$0PERI:(DE-600)2040222-3$$a10.2967/jnumed.122.264338$$gVol. 64, no. 2, p. 329 - 336$$n2$$p329 - 336$$tJournal of nuclear medicine$$v64$$x0097-9058$$y2023
000265117 909CO $$ooai:inrepo02.dkfz.de:265117$$pVDB
000265117 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-HGF)0$$aDeutsches Krebsforschungszentrum$$b0$$kDKFZ
000265117 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-HGF)0$$aDeutsches Krebsforschungszentrum$$b1$$kDKFZ
000265117 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-HGF)0$$aDeutsches Krebsforschungszentrum$$b2$$kDKFZ
000265117 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-HGF)0$$aDeutsches Krebsforschungszentrum$$b3$$kDKFZ
000265117 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-HGF)0$$aDeutsches Krebsforschungszentrum$$b6$$kDKFZ
000265117 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-HGF)0$$aDeutsches Krebsforschungszentrum$$b7$$kDKFZ
000265117 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-HGF)0$$aDeutsches Krebsforschungszentrum$$b8$$kDKFZ
000265117 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-HGF)0$$aDeutsches Krebsforschungszentrum$$b9$$kDKFZ
000265117 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-HGF)0$$aDeutsches Krebsforschungszentrum$$b10$$kDKFZ
000265117 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-HGF)0$$aDeutsches Krebsforschungszentrum$$b11$$kDKFZ
000265117 9131_ $$0G:(DE-HGF)POF4-899$$1G:(DE-HGF)POF4-890$$2G:(DE-HGF)POF4-800$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bProgrammungebundene Forschung$$lohne Programm$$vohne Topic$$x0
000265117 9141_ $$y2023
000265117 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2022-11-19
000265117 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2022-11-19
000265117 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2022-11-19
000265117 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ NUCL MED : 2022$$d2023-10-24
000265117 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-10-24
000265117 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-10-24
000265117 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central$$d2023-10-24
000265117 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-10-24
000265117 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2023-10-24
000265117 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-10-24
000265117 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2023-10-24
000265117 915__ $$0StatID:(DE-HGF)1110$$2StatID$$aDBCoverage$$bCurrent Contents - Clinical Medicine$$d2023-10-24
000265117 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bJ NUCL MED : 2022$$d2023-10-24
000265117 9201_ $$0I:(DE-He78)ED01-20160331$$kED01$$lDKTK ED ES zentral$$x0
000265117 980__ $$ajournal
000265117 980__ $$aVDB
000265117 980__ $$aI:(DE-He78)ED01-20160331
000265117 980__ $$aUNRESTRICTED