001     274430
005     20240229154934.0
024 7 _ |a 10.1016/j.trecan.2023.03.001
|2 doi
024 7 _ |a pmid:36959035
|2 pmid
024 7 _ |a 2405-8033
|2 ISSN
024 7 _ |a 2405-8025
|2 ISSN
024 7 _ |a altmetric:144475803
|2 altmetric
037 _ _ |a DKFZ-2023-00594
041 _ _ |a English
082 _ _ |a 610
100 1 _ |a Winkelkotte, Alina
|0 P:(DE-He78)a2efd829a4ed4177427f4ceeafa06a3c
|b 0
|e First author
|u dkfz
245 _ _ |a Palmitate paves the way to lung metastasis.
260 _ _ |a Amsterdam
|c 2023
|b Elsevier
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1687856882_19597
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a #EA:A410#LA:A410# / 2023 May;9(5):376-378 / Spotlight
520 _ _ |a New findings by Altea-Manzano et al. demonstrate that primary breast tumours or a high-fat diet induce palmitate secretion by alveolar type 2 (AT2) cells to prepare a premetastatic niche that promotes lung metastasis. Palmitate is utilised by cancer cells via carnitine palmitoyltransferase 1a (CPT1a) and lysine acetyltransferase 2a (KAT2a) to acetylate nuclear factor-κB (NF-κB)/p65. Blocking these enzymes reduced metastasis formation in both lean and high-fat diet mice.
536 _ _ |a 311 - Zellbiologie und Tumorbiologie (POF4-311)
|0 G:(DE-HGF)POF4-311
|c POF4-311
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de
650 _ 7 |a NF-kB
|2 Other
650 _ 7 |a breast cancer
|2 Other
650 _ 7 |a lung metastasis
|2 Other
650 _ 7 |a palmitate
|2 Other
650 _ 7 |a premetastatic niche
|2 Other
650 _ 7 |a protein acetylation
|2 Other
700 1 _ |a Schulze, Almut
|0 P:(DE-He78)94ae391f53fb9285e1b68f9930615af1
|b 1
|e Last author
|u dkfz
773 _ _ |a 10.1016/j.trecan.2023.03.001
|g p. S2405803323000304
|0 PERI:(DE-600)2852626-0
|n 5
|p 376-378
|t Trends in cancer
|v 9
|y 2023
|x 2405-8033
909 C O |p VDB
|o oai:inrepo02.dkfz.de:274430
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 0
|6 P:(DE-He78)a2efd829a4ed4177427f4ceeafa06a3c
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 1
|6 P:(DE-He78)94ae391f53fb9285e1b68f9930615af1
913 1 _ |a DE-HGF
|b Gesundheit
|l Krebsforschung
|1 G:(DE-HGF)POF4-310
|0 G:(DE-HGF)POF4-311
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Zellbiologie und Tumorbiologie
|x 0
914 1 _ |y 2023
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2022-11-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2022-11-12
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b TRENDS CANCER : 2022
|d 2023-08-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2023-08-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2023-08-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2023-08-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2023-08-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1110
|2 StatID
|b Current Contents - Clinical Medicine
|d 2023-08-25
915 _ _ |a IF >= 15
|0 StatID:(DE-HGF)9915
|2 StatID
|b TRENDS CANCER : 2022
|d 2023-08-25
920 2 _ |0 I:(DE-He78)A410-20160331
|k A410
|l Metabolismus und Microenvironment
|x 0
920 1 _ |0 I:(DE-He78)A410-20160331
|k A410
|l Metabolismus und Microenvironment
|x 0
920 0 _ |0 I:(DE-He78)A410-20160331
|k A410
|l Metabolismus und Microenvironment
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)A410-20160331
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21