Journal Article DKFZ-2023-01778

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Transformer-based biomarker prediction from colorectal cancer histology: A large-scale multicentric study.

 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;

2023
Elsevier New York, NY

Cancer cell 49(1), 1650-1661.e4 () [10.1016/j.ccell.2023.08.002]
 GO

This record in other databases:  

Please use a persistent id in citations: doi:

Abstract: Deep learning (DL) can accelerate the prediction of prognostic biomarkers from routine pathology slides in colorectal cancer (CRC). However, current approaches rely on convolutional neural networks (CNNs) and have mostly been validated on small patient cohorts. Here, we develop a new transformer-based pipeline for end-to-end biomarker prediction from pathology slides by combining a pre-trained transformer encoder with a transformer network for patch aggregation. Our transformer-based approach substantially improves the performance, generalizability, data efficiency, and interpretability as compared with current state-of-the-art algorithms. After training and evaluating on a large multicenter cohort of over 13,000 patients from 16 colorectal cancer cohorts, we achieve a sensitivity of 0.99 with a negative predictive value of over 0.99 for prediction of microsatellite instability (MSI) on surgical resection specimens. We demonstrate that resection specimen-only training reaches clinical-grade performance on endoscopic biopsy tissue, solving a long-standing diagnostic problem.

Keyword(s): artificial intelligence ; biomarker ; colorectal cancer ; deep learning ; microsatellite instability ; multiple instance learning ; transformer

Classification:

Note: 2023 Sep 11;41(9):1650-1661.e4

Contributing Institute(s):
  1. C070 Klinische Epidemiologie und Alternf. (C070)
  2. Präventive Onkologie (C120)
  3. DKTK HD zentral (HD01)
Research Program(s):
  1. 313 - Krebsrisikofaktoren und Prävention (POF4-313) (POF4-313)

Appears in the scientific report 2023
Database coverage:
Medline ; BIOSIS Previews ; Biological Abstracts ; Clarivate Analytics Master Journal List ; Current Contents - Clinical Medicine ; Current Contents - Life Sciences ; Ebsco Academic Search ; Essential Science Indicators ; IF >= 50 ; JCR ; SCOPUS ; Science Citation Index Expanded ; Web of Science Core Collection
Click to display QR Code for this record

The record appears in these collections:
Document types > Articles > Journal Article
Public records
Publications database

 Record created 2023-09-01, last modified 2024-02-29



Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)