000285075 001__ 285075
000285075 005__ 20240229155101.0
000285075 0247_ $$2doi$$a10.1016/j.devcel.2023.10.003
000285075 0247_ $$2pmid$$apmid:37890489
000285075 0247_ $$2ISSN$$a1534-5807
000285075 0247_ $$2ISSN$$a1878-1551
000285075 0247_ $$2altmetric$$aaltmetric:155783837
000285075 037__ $$aDKFZ-2023-02218
000285075 041__ $$aEnglish
000285075 082__ $$a610
000285075 1001_ $$0P:(DE-He78)8203ea3369f3ebed26d1c251d67ec345$$aHo, Kim Hoa$$b0$$eFirst author$$udkfz
000285075 245__ $$aChoroid plexuses carry nodal-like cilia that undergo axoneme regression from early adult stage.
000285075 260__ $$aNew York, NY$$bElsevier$$c2023
000285075 3367_ $$2DRIVER$$aarticle
000285075 3367_ $$2DataCite$$aOutput Types/Journal article
000285075 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1702022543_10449
000285075 3367_ $$2BibTeX$$aARTICLE
000285075 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000285075 3367_ $$00$$2EndNote$$aJournal Article
000285075 500__ $$aDKFZ-ZMBH Alliance / #EA:A320#LA:A320# / 2023 Dec 4;58(23):2641-2651.e6
000285075 520__ $$aChoroid plexuses (ChPs) produce cerebrospinal fluid and sense non-cell-autonomous stimuli to control the homeostasis of the central nervous system. They are mainly composed of epithelial multiciliated cells, whose development and function are still controversial. We have thus characterized the stepwise order of mammalian ChP epithelia cilia formation using a combination of super-resolution-microscopy approaches and mouse genetics. We show that ChP ciliated cells are built embryonically on a treadmill of spatiotemporally regulated events, starting with atypical centriole amplification and ending with the construction of nodal-like 9+0 cilia, characterized by both primary and motile features. ChP cilia undergo axoneme resorption at early postnatal stages through a microtubule destabilization process controlled by the microtubule-severing enzyme spastin and mitigated by polyglutamylation levels. Notably, this phenotype is preserved in humans, suggesting a conserved ciliary resorption mechanism in mammals.
000285075 536__ $$0G:(DE-HGF)POF4-311$$a311 - Zellbiologie und Tumorbiologie (POF4-311)$$cPOF4-311$$fPOF IV$$x0
000285075 588__ $$aDataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de
000285075 650_7 $$2Other$$aaging
000285075 650_7 $$2Other$$abasal feet
000285075 650_7 $$2Other$$acilia
000285075 650_7 $$2Other$$adevelopment
000285075 650_7 $$2Other$$aelectron microscopy
000285075 650_7 $$2Other$$aembryogenesis
000285075 650_7 $$2Other$$ahuman choroid plexus
000285075 650_7 $$2Other$$amulticiliogenesis
000285075 650_7 $$2Other$$apolyglutamylation
000285075 650_7 $$2Other$$aquantitative imaging
000285075 7001_ $$aCandat, Adrien$$b1
000285075 7001_ $$0P:(DE-He78)24a05bc60344dc599140e0c55ec6340f$$aScarpetta, Valentina$$b2$$udkfz
000285075 7001_ $$aFaucourt, Marion$$b3
000285075 7001_ $$aWeill, Solene$$b4
000285075 7001_ $$aSalio, Chiara$$b5
000285075 7001_ $$aD'Este, Elisa$$b6
000285075 7001_ $$aMeschkat, Martin$$b7
000285075 7001_ $$aWurm, Christian A$$b8
000285075 7001_ $$aKneussel, Matthias$$b9
000285075 7001_ $$aJanke, Carsten$$b10
000285075 7001_ $$aMagiera, Maria M$$b11
000285075 7001_ $$aGenovesio, Auguste$$b12
000285075 7001_ $$aMeunier, Alice$$b13
000285075 7001_ $$aSassoè-Pognetto, Marco$$b14
000285075 7001_ $$aBrill, Monika S$$b15
000285075 7001_ $$aSpassky, Nathalie$$b16
000285075 7001_ $$0P:(DE-He78)7de884e25564c58f26d5c8dbed578256$$aPatrizi, Annarita$$b17$$eLast author$$udkfz
000285075 773__ $$0PERI:(DE-600)2053870-4$$a10.1016/j.devcel.2023.10.003$$gp. S1534580723005233$$n23$$p2641-2651.e6$$tDevelopmental cell$$v58$$x1534-5807$$y2023
000285075 909CO $$ooai:inrepo02.dkfz.de:285075$$pVDB
000285075 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)8203ea3369f3ebed26d1c251d67ec345$$aDeutsches Krebsforschungszentrum$$b0$$kDKFZ
000285075 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)24a05bc60344dc599140e0c55ec6340f$$aDeutsches Krebsforschungszentrum$$b2$$kDKFZ
000285075 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)7de884e25564c58f26d5c8dbed578256$$aDeutsches Krebsforschungszentrum$$b17$$kDKFZ
000285075 9131_ $$0G:(DE-HGF)POF4-311$$1G:(DE-HGF)POF4-310$$2G:(DE-HGF)POF4-300$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lKrebsforschung$$vZellbiologie und Tumorbiologie$$x0
000285075 9141_ $$y2023
000285075 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-10-24
000285075 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-10-24
000285075 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2023-10-24
000285075 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2023-10-24
000285075 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-10-24
000285075 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2023-10-24
000285075 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2023-10-24
000285075 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2023-10-24
000285075 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bDEV CELL : 2022$$d2023-10-24
000285075 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-10-24
000285075 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2023-10-24
000285075 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2023-10-24
000285075 915__ $$0StatID:(DE-HGF)9910$$2StatID$$aIF >= 10$$bDEV CELL : 2022$$d2023-10-24
000285075 9202_ $$0I:(DE-He78)A320-20160331$$kA320$$lA320 NWG Neuronal signaling and morphogenesis$$x0
000285075 9201_ $$0I:(DE-He78)A320-20160331$$kA320$$lA320 NWG Neuronal signaling and morphogenesis$$x0
000285075 9200_ $$0I:(DE-He78)A320-20160331$$kA320$$lA320 NWG Neuronal signaling and morphogenesis$$x0
000285075 980__ $$ajournal
000285075 980__ $$aVDB
000285075 980__ $$aI:(DE-He78)A320-20160331
000285075 980__ $$aUNRESTRICTED