000286720 001__ 286720
000286720 005__ 20250729140807.0
000286720 0247_ $$2doi$$a10.1002/mrm.29978
000286720 0247_ $$2pmid$$apmid:38174601
000286720 0247_ $$2ISSN$$a1522-2594
000286720 0247_ $$2ISSN$$a0740-3194
000286720 0247_ $$2altmetric$$aaltmetric:158087506
000286720 037__ $$aDKFZ-2024-00060
000286720 041__ $$aEnglish
000286720 082__ $$a610
000286720 1001_ $$aDegenhardt, Katja$$b0
000286720 245__ $$aToward accurate and fast velocity quantification with 3D ultrashort TE phase-contrast imaging.
000286720 260__ $$aNew York, NY [u.a.]$$bWiley-Liss$$c2024
000286720 3367_ $$2DRIVER$$aarticle
000286720 3367_ $$2DataCite$$aOutput Types/Journal article
000286720 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1711008329_10705
000286720 3367_ $$2BibTeX$$aARTICLE
000286720 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000286720 3367_ $$00$$2EndNote$$aJournal Article
000286720 500__ $$a#LA:E020# / 2024 May;91(5):1994-2009
000286720 520__ $$aTraditional phase-contrast MRI is affected by displacement artifacts caused by non-synchronized spatial- and velocity-encoding time points. The resulting inaccurate velocity maps can affect the accuracy of derived hemodynamic parameters. This study proposes and characterizes a 3D radial phase-contrast UTE (PC-UTE) sequence to reduce displacement artifacts. Furthermore, it investigates the displacement of a standard Cartesian flow sequence by utilizing a displacement-free synchronized-single-point-imaging MR sequence (SYNC-SPI) that requires clinically prohibitively long acquisition times.3D flow data was acquired at 3T at three different constant flow rates and varying spatial resolutions in a stenotic aorta phantom using the proposed PC-UTE, a Cartesian flow sequence, and a SYNC-SPI sequence as reference. Expected displacement artifacts were calculated from gradient timing waveforms and compared to displacement values measured in the in vitro flow experiments.The PC-UTE sequence reduces displacement and intravoxel dephasing, leading to decreased geometric distortions and signal cancellations in magnitude images, and more spatially accurate velocity quantification compared to the Cartesian flow acquisitions; errors increase with velocity and higher spatial resolution.PC-UTE MRI can measure velocity vector fields with greater accuracy than Cartesian acquisitions (although pulsatile fields were not studied) and shorter scan times than SYNC-SPI. As such, this approach is superior to traditional Cartesian 3D and 4D flow MRI when spatial misrepresentations cannot be tolerated, for example, when computational fluid dynamics simulations are compared to or combined with in vitro or in vivo measurements, or regional parameters such as wall shear stress are of interest.
000286720 536__ $$0G:(DE-HGF)POF4-315$$a315 - Bildgebung und Radioonkologie (POF4-315)$$cPOF4-315$$fPOF IV$$x0
000286720 588__ $$aDataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de
000286720 650_7 $$2Other$$a4D flow MRI
000286720 650_7 $$2Other$$aGIRF
000286720 650_7 $$2Other$$aPC-UTE
000286720 650_7 $$2Other$$adisplacement artifact
000286720 650_7 $$2Other$$aflow artifact
000286720 650_7 $$2Other$$agradient imperfections
000286720 7001_ $$0P:(DE-He78)549e123a16abe980dac951ef402f70ec$$aSchmidt, Simon$$b1
000286720 7001_ $$00000-0003-3618-9610$$aAigner, Christoph S$$b2
000286720 7001_ $$0P:(DE-He78)0ad4af74a6b337e282ad0281595593bc$$aKratzer, Fabian$$b3$$udkfz
000286720 7001_ $$aSeiter, Daniel P$$b4
000286720 7001_ $$00000-0001-6731-9583$$aMueller, Max$$b5
000286720 7001_ $$00000-0002-4355-8368$$aKolbitsch, Christoph$$b6
000286720 7001_ $$0P:(DE-He78)054fd7a5195b75b11fbdc5c360276011$$aNagel, Armin$$b7$$udkfz
000286720 7001_ $$00000-0002-7931-1930$$aWieben, Oliver$$b8
000286720 7001_ $$00000-0003-1310-2631$$aSchaeffter, Tobias$$b9
000286720 7001_ $$00000-0003-3100-1092$$aSchulz-Menger, Jeanette$$b10
000286720 7001_ $$0P:(DE-He78)19e2d877276b0e5eec11cdfc1789a55e$$aSchmitter, Sebastian$$b11$$eLast author$$udkfz
000286720 773__ $$0PERI:(DE-600)1493786-4$$a10.1002/mrm.29978$$gp. mrm.29978$$n5$$p1994-2009$$tMagnetic resonance in medicine$$v91$$x1522-2594$$y2024
000286720 8564_ $$uhttps://inrepo02.dkfz.de/record/286720/files/Magnetic%20Resonance%20in%20Med%20-%202024%20-%20Degenhardt%20-%20Toward%20accurate%20and%20fast%20velocity%20quantification%20with%203D%20ultrashort%20TE.pdf
000286720 8564_ $$uhttps://inrepo02.dkfz.de/record/286720/files/Magnetic%20Resonance%20in%20Med%20-%202024%20-%20Degenhardt%20-%20Toward%20accurate%20and%20fast%20velocity%20quantification%20with%203D%20ultrashort%20TE.pdf?subformat=pdfa$$xpdfa
000286720 909CO $$ooai:inrepo02.dkfz.de:286720$$pVDB
000286720 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)549e123a16abe980dac951ef402f70ec$$aDeutsches Krebsforschungszentrum$$b1$$kDKFZ
000286720 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)0ad4af74a6b337e282ad0281595593bc$$aDeutsches Krebsforschungszentrum$$b3$$kDKFZ
000286720 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)054fd7a5195b75b11fbdc5c360276011$$aDeutsches Krebsforschungszentrum$$b7$$kDKFZ
000286720 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)19e2d877276b0e5eec11cdfc1789a55e$$aDeutsches Krebsforschungszentrum$$b11$$kDKFZ
000286720 9131_ $$0G:(DE-HGF)POF4-315$$1G:(DE-HGF)POF4-310$$2G:(DE-HGF)POF4-300$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lKrebsforschung$$vBildgebung und Radioonkologie$$x0
000286720 9141_ $$y2024
000286720 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2023-10-21$$wger
000286720 915__ $$0StatID:(DE-HGF)3001$$2StatID$$aDEAL Wiley$$d2023-10-21$$wger
000286720 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bMAGN RESON MED : 2022$$d2023-10-21
000286720 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-10-21
000286720 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-10-21
000286720 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-10-21
000286720 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2023-10-21
000286720 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2023-10-21
000286720 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-10-21
000286720 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2023-10-21
000286720 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2023-10-21
000286720 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2023-10-21
000286720 915__ $$0StatID:(DE-HGF)1110$$2StatID$$aDBCoverage$$bCurrent Contents - Clinical Medicine$$d2023-10-21
000286720 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2023-10-21
000286720 9202_ $$0I:(DE-He78)E020-20160331$$kE020$$lE020 Med. Physik in der Radiologie$$x0
000286720 9201_ $$0I:(DE-He78)E020-20160331$$kE020$$lE020 Med. Physik in der Radiologie$$x0
000286720 980__ $$ajournal
000286720 980__ $$aVDB
000286720 980__ $$aI:(DE-He78)E020-20160331
000286720 980__ $$aUNRESTRICTED