001     287267
005     20240404145624.0
024 7 _ |a 10.1158/1055-9965.EPI-23-0600
|2 doi
024 7 _ |a pmid:38252034
|2 pmid
024 7 _ |a 1055-9965
|2 ISSN
024 7 _ |a 1538-7755
|2 ISSN
024 7 _ |a altmetric:158869057
|2 altmetric
037 _ _ |a DKFZ-2024-00199
041 _ _ |a English
082 _ _ |a 610
100 1 _ |a Thomas, Claire E
|0 0000-0001-9515-3277
|b 0
245 _ _ |a Epidemiologic factors in relation to colorectal cancer risk and survival by genotoxic colibactin mutational signature.
260 _ _ |a Philadelphia, Pa.
|c 2024
|b AACR
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1712235345_10248
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a 2024 Apr 3;33(4):534-546
520 _ _ |a The genotoxin colibactin causes a tumor single base substitution (SBS) mutational signature, SBS88. It is unknown whether epidemiologic factors association with colorectal cancer (CRC) risk and survival differ by SBS88.Within the Genetic Epidemiology of Colorectal Cancer Consortium and Colon Cancer Family Registry, we measured SBS88 in 4,308 microsatellite stable/microsatellite instability low tumors. Associations of epidemiologic factors with CRC risk by SBS88 were assessed using multinomial regression (N=4,308 cases, 14,192 controls; cohort-only cases N=1,911), and with CRC-specific survival using Cox proportional hazards regression (N=3,465 cases).392 (9%) tumors were SBS88 positive. Among all cases, the highest quartile of fruit intake was associated with lower risk of SBS88-positive CRC than SBS88-negative CRC [odds ratio (OR) = 0.53, 95% confidence interval (CI) 0.37, 0.76; OR = 0.75, 95% CI 0.66, 0.85, respectively, Pheterogeneity = 0.047]. Among cohort studies, associations of BMI, alcohol, and fruit intake with CRC risk differed by SBS88. BMI ≥30 kg/m2 was associated with worse CRC-specific survival among those SBS88-positive [hazard ratio (HR) = 3.40, 95% CI 1.47, 7.84], but not among those SBS88-negative (HR = 0.97, 95% CI 0.78, 1.21, Pheterogeneity = 0.066).Most epidemiologic factors did not differ by SBS88 for CRC risk or survival. Higher BMI may be associated with worse CRC-specific survival among those SBS88-positive, however validation is needed in samples with whole-genome or exome sequencing available.This study highlights the importance of identification of tumor phenotypes related to CRC and understanding potential heterogeneity for risk and survival.
536 _ _ |a 313 - Krebsrisikofaktoren und Prävention (POF4-313)
|0 G:(DE-HGF)POF4-313
|c POF4-313
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de
700 1 _ |a Georgeson, Peter
|0 0000-0002-5096-4735
|b 1
700 1 _ |a Qu, Conghui
|0 0000-0003-1927-6245
|b 2
700 1 _ |a Steinfelder, Robert S
|0 0000-0003-4204-8013
|b 3
700 1 _ |a Buchanan, Daniel D
|0 0000-0003-2225-6675
|b 4
700 1 _ |a Song, Mingyang
|0 0000-0002-1324-0316
|b 5
700 1 _ |a Harrison, Tabitha A
|0 0000-0002-4173-7530
|b 6
700 1 _ |a Um, Caroline Y
|0 0000-0001-5449-6230
|b 7
700 1 _ |a Hullar, Meredith A
|0 0000-0002-5322-9568
|b 8
700 1 _ |a Jenkins, Mark A
|0 0000-0002-8964-6160
|b 9
700 1 _ |a Van Guelpen, Bethany
|0 0000-0002-9692-101X
|b 10
700 1 _ |a Lynch, Brigid M
|0 0000-0001-8060-547X
|b 11
700 1 _ |a Melaku, Yohannes Adama
|0 0000-0002-3051-7313
|b 12
700 1 _ |a Huyghe, Jeroen R
|0 0000-0001-6027-9806
|b 13
700 1 _ |a Aglago, Elom K
|0 0000-0002-0442-3284
|b 14
700 1 _ |a Berndt, Sonja I
|0 0000-0001-5230-0652
|b 15
700 1 _ |a Boardman, Lisa A
|0 0000-0002-1330-2054
|b 16
700 1 _ |a Campbell, Peter T
|0 0000-0002-5549-2036
|b 17
700 1 _ |a Cao, Yin
|0 0000-0001-9835-7662
|b 18
700 1 _ |a Chan, Andrew T
|0 0000-0001-7284-6767
|b 19
700 1 _ |a Drew, David A
|0 0000-0002-8813-0816
|b 20
700 1 _ |a Figueiredo, Jane C
|0 0000-0001-8040-3341
|b 21
700 1 _ |a French, Amy J
|0 0009-0002-3258-3653
|b 22
700 1 _ |a Giannakis, Marios
|0 0000-0001-9012-6982
|b 23
700 1 _ |a Goode, Ellen L
|0 0000-0002-9094-8326
|b 24
700 1 _ |a Gruber, Stephen B
|0 0000-0001-8656-7822
|b 25
700 1 _ |a Gsur, Andrea
|0 0000-0002-9795-1528
|b 26
700 1 _ |a Gunter, Marc J
|0 0000-0001-5472-6761
|b 27
700 1 _ |a Hoffmeister, Michael
|0 P:(DE-He78)6c5d058b7552d071a7fa4c5e943fff0f
|b 28
|u dkfz
700 1 _ |a Hsu, Li
|0 0000-0001-8168-4712
|b 29
700 1 _ |a Huang, Wen-Yi
|b 30
700 1 _ |a Moreno, Victor
|0 0000-0002-2818-5487
|b 31
700 1 _ |a Murphy, Neil
|0 0000-0003-3347-8249
|b 32
700 1 _ |a Newcomb, Polly A
|0 0000-0001-8786-0043
|b 33
700 1 _ |a Newton, Christina C
|0 0000-0003-1471-5608
|b 34
700 1 _ |a Nowak, Jonathan A
|0 0000-0002-0943-7407
|b 35
700 1 _ |a Obón-Santacana, Mireia
|0 0000-0003-4646-3513
|b 36
700 1 _ |a Ogino, Shuji
|0 0000-0002-3909-2323
|b 37
700 1 _ |a Sun, Wei
|0 0000-0002-6350-1107
|b 38
700 1 _ |a Toland, Amanda E
|0 0000-0002-0271-1792
|b 39
700 1 _ |a Trinh, Quang M
|0 0000-0002-3602-2290
|b 40
700 1 _ |a Ugai, Tomotaka
|0 0000-0003-0182-5269
|b 41
700 1 _ |a Zaidi, Syed H
|0 0000-0001-9964-8285
|b 42
700 1 _ |a Peters, Ulrike
|0 0000-0001-5666-9318
|b 43
700 1 _ |a Phipps, Amanda I
|0 0000-0002-1446-2201
|b 44
773 _ _ |a 10.1158/1055-9965.EPI-23-0600
|0 PERI:(DE-600)2036781-8
|n 4
|p 534-546
|t Cancer epidemiology, biomarkers & prevention
|v 33
|y 2024
|x 1055-9965
909 C O |p VDB
|o oai:inrepo02.dkfz.de:287267
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 28
|6 P:(DE-He78)6c5d058b7552d071a7fa4c5e943fff0f
913 1 _ |a DE-HGF
|b Gesundheit
|l Krebsforschung
|1 G:(DE-HGF)POF4-310
|0 G:(DE-HGF)POF4-313
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Krebsrisikofaktoren und Prävention
|x 0
914 1 _ |y 2024
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2023-08-19
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2023-08-19
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2023-08-19
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2023-08-19
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2023-08-19
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2023-08-19
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2023-08-19
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2023-08-19
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1110
|2 StatID
|b Current Contents - Clinical Medicine
|d 2023-08-19
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b CANCER EPIDEM BIOMAR : 2022
|d 2023-08-19
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2023-08-19
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2023-08-19
920 1 _ |0 I:(DE-He78)C070-20160331
|k C070
|l C070 Klinische Epidemiologie und Alternf.
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)C070-20160331
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21