000289206 001__ 289206
000289206 005__ 20240904113236.0
000289206 0247_ $$2doi$$a10.1093/infdis/jiae167
000289206 0247_ $$2pmid$$apmid:38557867
000289206 0247_ $$2ISSN$$a0022-1899
000289206 0247_ $$2ISSN$$a1537-6613
000289206 0247_ $$2altmetric$$aaltmetric:161544614
000289206 037__ $$aDKFZ-2024-00640
000289206 041__ $$aEnglish
000289206 082__ $$a610
000289206 1001_ $$aBar Ziv, Omer$$b0
000289206 245__ $$aDiagnosis and Risk Factors of Prediabetes and Diabetes in People Living with HIV- Evaluation of Clinical and Microbiome Parameters.
000289206 260__ $$aOxford [u.a.]$$bOxford Univ. Press$$c2024
000289206 3367_ $$2DRIVER$$aarticle
000289206 3367_ $$2DataCite$$aOutput Types/Journal article
000289206 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1725442322_26450
000289206 3367_ $$2BibTeX$$aARTICLE
000289206 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000289206 3367_ $$00$$2EndNote$$aJournal Article
000289206 500__ $$a2024 Aug 16;230(2):411-420
000289206 520__ $$aDiabetes is more common among people living with HIV (PLWH), as compared with healthy individuals. In a prospective multicenter study (N = 248), we identified normoglycemic (48.7%), prediabetic (44.4%) and diabetic (6.9%) PLWH. HbA1c and fasting blood glucose (FBG) sensitivity in defining dysglycemia was 96.8%, while addition of oral glucose tolerance test led to reclassification of only 4 patients. Inclusion of 93 additional PLWH with known DM enabled identification of multiple independent predictors of dysglycemia or diabetes: older age, higher BMI, Ethiopian origin, HIV duration, lower integrase inhibitor exposure and advanced disease at diagnosis. Shotgun metagenomic microbiome analysis revealed 4 species that were significantly expanded with hyperglycemia/hyperinsulinemia, and 2 species that were differentially more prevalent in prediabetic/diabetic PLWH. Collectively, we uncover multiple potential host and microbiome predictors of altered glycemic status in PLWH, while demonstrating that FBG and HbA1C likely suffice for diabetes screening. These potential diabetic predictors merit future prospective validation.
000289206 536__ $$0G:(DE-HGF)POF4-314$$a314 - Immunologie und Krebs (POF4-314)$$cPOF4-314$$fPOF IV$$x0
000289206 588__ $$aDataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de
000289206 650_7 $$2Other$$aHIV/AIDS
000289206 650_7 $$2Other$$aPrediction and Prevention
000289206 650_7 $$2Other$$aType 2 Diabetes
000289206 650_7 $$2Other$$amicrobiome
000289206 650_7 $$2Other$$aprediabetes
000289206 7001_ $$00000-0002-7830-9994$$aCahn, Avivit$$b1
000289206 7001_ $$aJansen, Tallulah$$b2
000289206 7001_ $$aIstomin, Valery$$b3
000289206 7001_ $$aKedem, Eynat$$b4
000289206 7001_ $$aOlshtain-Pops, Karen$$b5
000289206 7001_ $$aIsrael, Sarah$$b6
000289206 7001_ $$aOster, Yonatan$$b7
000289206 7001_ $$aOrenbuch-Harroch, Efrat$$b8
000289206 7001_ $$aKorem, Maya$$b9
000289206 7001_ $$aStrahilevitz, Jacob$$b10
000289206 7001_ $$aLevy, Itzchak$$b11
000289206 7001_ $$aValdés-Mas, Rafael$$b12
000289206 7001_ $$aIvanova, Valeria$$b13
000289206 7001_ $$0P:(DE-He78)725ad944da4e1ea60389fe9dbbed2c7c$$aElinav, Eran$$b14$$udkfz
000289206 7001_ $$aShahar, Eduardo$$b15
000289206 7001_ $$00000-0001-9046-8130$$aElinav, Hila$$b16
000289206 773__ $$0PERI:(DE-600)1473843-0$$a10.1093/infdis/jiae167$$gp. jiae167$$n2$$p411-420$$tThe journal of infectious diseases$$v230$$x0022-1899$$y2024
000289206 909CO $$ooai:inrepo02.dkfz.de:289206$$pVDB
000289206 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)725ad944da4e1ea60389fe9dbbed2c7c$$aDeutsches Krebsforschungszentrum$$b14$$kDKFZ
000289206 9131_ $$0G:(DE-HGF)POF4-314$$1G:(DE-HGF)POF4-310$$2G:(DE-HGF)POF4-300$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lKrebsforschung$$vImmunologie und Krebs$$x0
000289206 9141_ $$y2024
000289206 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium$$d2023-10-21$$wger
000289206 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-10-21
000289206 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-10-21
000289206 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central$$d2023-10-21
000289206 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-10-21
000289206 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2023-10-21
000289206 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2023-10-21
000289206 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-10-21
000289206 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2023-10-21
000289206 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2023-10-21
000289206 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2023-10-21
000289206 915__ $$0StatID:(DE-HGF)1110$$2StatID$$aDBCoverage$$bCurrent Contents - Clinical Medicine$$d2023-10-21
000289206 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ INFECT DIS : 2022$$d2023-10-21
000289206 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2023-10-21
000289206 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2023-10-21
000289206 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bJ INFECT DIS : 2022$$d2023-10-21
000289206 9201_ $$0I:(DE-He78)F220-20160331$$kF220$$lMikrobiom und Krebs$$x0
000289206 9201_ $$0I:(DE-He78)D480-20160331$$kD480$$lNWG Epithel-Mikrobiom-Interaktionen$$x1
000289206 980__ $$ajournal
000289206 980__ $$aVDB
000289206 980__ $$aI:(DE-He78)F220-20160331
000289206 980__ $$aI:(DE-He78)D480-20160331
000289206 980__ $$aUNRESTRICTED