001     289206
005     20240904113236.0
024 7 _ |a 10.1093/infdis/jiae167
|2 doi
024 7 _ |a pmid:38557867
|2 pmid
024 7 _ |a 0022-1899
|2 ISSN
024 7 _ |a 1537-6613
|2 ISSN
024 7 _ |a altmetric:161544614
|2 altmetric
037 _ _ |a DKFZ-2024-00640
041 _ _ |a English
082 _ _ |a 610
100 1 _ |a Bar Ziv, Omer
|b 0
245 _ _ |a Diagnosis and Risk Factors of Prediabetes and Diabetes in People Living with HIV- Evaluation of Clinical and Microbiome Parameters.
260 _ _ |a Oxford [u.a.]
|c 2024
|b Oxford Univ. Press
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1725442322_26450
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a 2024 Aug 16;230(2):411-420
520 _ _ |a Diabetes is more common among people living with HIV (PLWH), as compared with healthy individuals. In a prospective multicenter study (N = 248), we identified normoglycemic (48.7%), prediabetic (44.4%) and diabetic (6.9%) PLWH. HbA1c and fasting blood glucose (FBG) sensitivity in defining dysglycemia was 96.8%, while addition of oral glucose tolerance test led to reclassification of only 4 patients. Inclusion of 93 additional PLWH with known DM enabled identification of multiple independent predictors of dysglycemia or diabetes: older age, higher BMI, Ethiopian origin, HIV duration, lower integrase inhibitor exposure and advanced disease at diagnosis. Shotgun metagenomic microbiome analysis revealed 4 species that were significantly expanded with hyperglycemia/hyperinsulinemia, and 2 species that were differentially more prevalent in prediabetic/diabetic PLWH. Collectively, we uncover multiple potential host and microbiome predictors of altered glycemic status in PLWH, while demonstrating that FBG and HbA1C likely suffice for diabetes screening. These potential diabetic predictors merit future prospective validation.
536 _ _ |a 314 - Immunologie und Krebs (POF4-314)
|0 G:(DE-HGF)POF4-314
|c POF4-314
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de
650 _ 7 |a HIV/AIDS
|2 Other
650 _ 7 |a Prediction and Prevention
|2 Other
650 _ 7 |a Type 2 Diabetes
|2 Other
650 _ 7 |a microbiome
|2 Other
650 _ 7 |a prediabetes
|2 Other
700 1 _ |a Cahn, Avivit
|0 0000-0002-7830-9994
|b 1
700 1 _ |a Jansen, Tallulah
|b 2
700 1 _ |a Istomin, Valery
|b 3
700 1 _ |a Kedem, Eynat
|b 4
700 1 _ |a Olshtain-Pops, Karen
|b 5
700 1 _ |a Israel, Sarah
|b 6
700 1 _ |a Oster, Yonatan
|b 7
700 1 _ |a Orenbuch-Harroch, Efrat
|b 8
700 1 _ |a Korem, Maya
|b 9
700 1 _ |a Strahilevitz, Jacob
|b 10
700 1 _ |a Levy, Itzchak
|b 11
700 1 _ |a Valdés-Mas, Rafael
|b 12
700 1 _ |a Ivanova, Valeria
|b 13
700 1 _ |a Elinav, Eran
|0 P:(DE-He78)725ad944da4e1ea60389fe9dbbed2c7c
|b 14
|u dkfz
700 1 _ |a Shahar, Eduardo
|b 15
700 1 _ |a Elinav, Hila
|0 0000-0001-9046-8130
|b 16
773 _ _ |a 10.1093/infdis/jiae167
|g p. jiae167
|0 PERI:(DE-600)1473843-0
|n 2
|p 411-420
|t The journal of infectious diseases
|v 230
|y 2024
|x 0022-1899
909 C O |p VDB
|o oai:inrepo02.dkfz.de:289206
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 14
|6 P:(DE-He78)725ad944da4e1ea60389fe9dbbed2c7c
913 1 _ |a DE-HGF
|b Gesundheit
|l Krebsforschung
|1 G:(DE-HGF)POF4-310
|0 G:(DE-HGF)POF4-314
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Immunologie und Krebs
|x 0
914 1 _ |y 2024
915 _ _ |a National-Konsortium
|0 StatID:(DE-HGF)0430
|2 StatID
|d 2023-10-21
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2023-10-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2023-10-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0320
|2 StatID
|b PubMed Central
|d 2023-10-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2023-10-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2023-10-21
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2023-10-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2023-10-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2023-10-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2023-10-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2023-10-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1110
|2 StatID
|b Current Contents - Clinical Medicine
|d 2023-10-21
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b J INFECT DIS : 2022
|d 2023-10-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2023-10-21
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2023-10-21
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b J INFECT DIS : 2022
|d 2023-10-21
920 1 _ |0 I:(DE-He78)F220-20160331
|k F220
|l Mikrobiom und Krebs
|x 0
920 1 _ |0 I:(DE-He78)D480-20160331
|k D480
|l NWG Epithel-Mikrobiom-Interaktionen
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)F220-20160331
980 _ _ |a I:(DE-He78)D480-20160331
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21