000289786 001__ 289786
000289786 005__ 20251111115730.0
000289786 0247_ $$2doi$$a10.1088/1361-6560/ad42fd
000289786 0247_ $$2pmid$$apmid:38657625
000289786 0247_ $$2ISSN$$a0031-9155
000289786 0247_ $$2ISSN$$a1361-6560
000289786 037__ $$aDKFZ-2024-00865
000289786 041__ $$aEnglish
000289786 082__ $$a530
000289786 1001_ $$00000-0002-7086-5187$$aShaikh, Saad$$b0
000289786 245__ $$aSpread-out Bragg peak measurements using a compact quality assurance range calorimeter at the Clatterbridge Cancer Centre.
000289786 260__ $$aBristol$$bIOP Publ.$$c2024
000289786 3367_ $$2DRIVER$$aarticle
000289786 3367_ $$2DataCite$$aOutput Types/Journal article
000289786 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1716281723_2022
000289786 3367_ $$2BibTeX$$aARTICLE
000289786 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000289786 3367_ $$00$$2EndNote$$aJournal Article
000289786 520__ $$aThe superior dose conformity provided by proton therapy relative to conventional X-ray radiotherapy necessitates more rigorous Quality Assurance (QA) procedures to ensure optimal patient safety. Practically however, time-constraints prevent comprehensive measurements to be made of the proton range in water: a key parameter in ensuring accurate treatment delivery.A novel scintillator-based device for fast, accurate water-equivalent proton range QA measurements for ocular proton therapy is presented. Experiments were conducted using a compact detector prototype, the Quality Assurance Range Calorimeter (QuARC), at the Clatterbridge Cancer Centre (CCC) in Wirral, UK for the measurement of pristine and spread-out Bragg peaks (SOBPs). The QuARC uses a series of 14 optically-isolated 100 x 100 x 2.85 mm polystyrene scintillator sheets, read out by a series of photodiodes. The detector system is housed in a custom 3D-printed enclosure mounted directly to the nozzle and a numerical model was used to fit measured depth-light curves and correct for scintillator light quenching.Measurements of the pristine 60 MeV proton Bragg curve found the QuARC able to measure proton ranges accurate to 0.2 mm and reduced QA measurement times from several minutes down to a few seconds. A new framework of the quenching model was deployed to successfully fit depth-light curves of SOBPs with similar range accuracy.The speed, range accuracy and simplicity of the QuARC make the device a promising candidate for ocular proton range QA. Further work to investigate the performance of SOBP fitting at higher energies/greater depths is warranted.
000289786 536__ $$0G:(DE-HGF)POF4-315$$a315 - Bildgebung und Radioonkologie (POF4-315)$$cPOF4-315$$fPOF IV$$x0
000289786 588__ $$aDataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de
000289786 650_7 $$2Other$$aplastic scintillator
000289786 650_7 $$2Other$$aproton therapy
000289786 650_7 $$2Other$$aquality assurance
000289786 650_7 $$2Other$$aspread out Bragg peak
000289786 7001_ $$aEscribano-Rodriguez, Sonia$$b1
000289786 7001_ $$aRadogna, Raffaella$$b2
000289786 7001_ $$0P:(DE-He78)e37dd0bc6f3e4d55b7967219607e7d4e$$aKelleter, Laurent$$b3$$udkfz
000289786 7001_ $$aGodden, Connor$$b4
000289786 7001_ $$aWarren, Matthew$$b5
000289786 7001_ $$aAttree, Derek$$b6
000289786 7001_ $$aSaakyan, Ruben$$b7
000289786 7001_ $$aMortimer, Linda$$b8
000289786 7001_ $$aCorlett, Peter$$b9
000289786 7001_ $$aWarry, Alison$$b10
000289786 7001_ $$aGosling, Andrew$$b11
000289786 7001_ $$aBaker, Colin$$b12
000289786 7001_ $$aPoynter, Andrew$$b13
000289786 7001_ $$aKacperek, Andrzej$$b14
000289786 7001_ $$aJolly, Simon$$b15
000289786 773__ $$0PERI:(DE-600)1473501-5$$a10.1088/1361-6560/ad42fd$$n11$$p115015$$tPhysics in medicine and biology$$v69$$x0031-9155$$y2024
000289786 8564_ $$uhttps://inrepo02.dkfz.de/record/289786/files/Shaikh_2024_Phys._Med._Biol._69_115015.pdf$$yOpenAccess
000289786 8564_ $$uhttps://inrepo02.dkfz.de/record/289786/files/Shaikh_2024_Phys._Med._Biol._69_115015.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000289786 909CO $$ooai:inrepo02.dkfz.de:289786$$popenaire$$popen_access$$pVDB$$pdriver$$pdnbdelivery
000289786 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)e37dd0bc6f3e4d55b7967219607e7d4e$$aDeutsches Krebsforschungszentrum$$b3$$kDKFZ
000289786 9131_ $$0G:(DE-HGF)POF4-315$$1G:(DE-HGF)POF4-310$$2G:(DE-HGF)POF4-300$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lKrebsforschung$$vBildgebung und Radioonkologie$$x0
000289786 9141_ $$y2024
000289786 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-08-26
000289786 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2023-08-26
000289786 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2023-08-26
000289786 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2023-08-26
000289786 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2023-08-26
000289786 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPHYS MED BIOL : 2022$$d2023-08-26
000289786 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2023-08-26
000289786 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2023-08-26
000289786 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2023-08-26
000289786 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000289786 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2023-08-26
000289786 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium$$d2023-08-26$$wger
000289786 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-08-26
000289786 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-08-26
000289786 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-08-26
000289786 9201_ $$0I:(DE-He78)E040-20160331$$kE040$$lE040 Med. Physik in der Strahlentherapie$$x0
000289786 980__ $$ajournal
000289786 980__ $$aVDB
000289786 980__ $$aUNRESTRICTED
000289786 980__ $$aI:(DE-He78)E040-20160331
000289786 9801_ $$aFullTexts