001     289786
005     20251111115730.0
024 7 _ |a 10.1088/1361-6560/ad42fd
|2 doi
024 7 _ |a pmid:38657625
|2 pmid
024 7 _ |a 0031-9155
|2 ISSN
024 7 _ |a 1361-6560
|2 ISSN
037 _ _ |a DKFZ-2024-00865
041 _ _ |a English
082 _ _ |a 530
100 1 _ |a Shaikh, Saad
|0 0000-0002-7086-5187
|b 0
245 _ _ |a Spread-out Bragg peak measurements using a compact quality assurance range calorimeter at the Clatterbridge Cancer Centre.
260 _ _ |a Bristol
|c 2024
|b IOP Publ.
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1716281723_2022
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The superior dose conformity provided by proton therapy relative to conventional X-ray radiotherapy necessitates more rigorous Quality Assurance (QA) procedures to ensure optimal patient safety. Practically however, time-constraints prevent comprehensive measurements to be made of the proton range in water: a key parameter in ensuring accurate treatment delivery.A novel scintillator-based device for fast, accurate water-equivalent proton range QA measurements for ocular proton therapy is presented. Experiments were conducted using a compact detector prototype, the Quality Assurance Range Calorimeter (QuARC), at the Clatterbridge Cancer Centre (CCC) in Wirral, UK for the measurement of pristine and spread-out Bragg peaks (SOBPs). The QuARC uses a series of 14 optically-isolated 100 x 100 x 2.85 mm polystyrene scintillator sheets, read out by a series of photodiodes. The detector system is housed in a custom 3D-printed enclosure mounted directly to the nozzle and a numerical model was used to fit measured depth-light curves and correct for scintillator light quenching.Measurements of the pristine 60 MeV proton Bragg curve found the QuARC able to measure proton ranges accurate to 0.2 mm and reduced QA measurement times from several minutes down to a few seconds. A new framework of the quenching model was deployed to successfully fit depth-light curves of SOBPs with similar range accuracy.The speed, range accuracy and simplicity of the QuARC make the device a promising candidate for ocular proton range QA. Further work to investigate the performance of SOBP fitting at higher energies/greater depths is warranted.
536 _ _ |a 315 - Bildgebung und Radioonkologie (POF4-315)
|0 G:(DE-HGF)POF4-315
|c POF4-315
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de
650 _ 7 |a plastic scintillator
|2 Other
650 _ 7 |a proton therapy
|2 Other
650 _ 7 |a quality assurance
|2 Other
650 _ 7 |a spread out Bragg peak
|2 Other
700 1 _ |a Escribano-Rodriguez, Sonia
|b 1
700 1 _ |a Radogna, Raffaella
|b 2
700 1 _ |a Kelleter, Laurent
|0 P:(DE-He78)e37dd0bc6f3e4d55b7967219607e7d4e
|b 3
|u dkfz
700 1 _ |a Godden, Connor
|b 4
700 1 _ |a Warren, Matthew
|b 5
700 1 _ |a Attree, Derek
|b 6
700 1 _ |a Saakyan, Ruben
|b 7
700 1 _ |a Mortimer, Linda
|b 8
700 1 _ |a Corlett, Peter
|b 9
700 1 _ |a Warry, Alison
|b 10
700 1 _ |a Gosling, Andrew
|b 11
700 1 _ |a Baker, Colin
|b 12
700 1 _ |a Poynter, Andrew
|b 13
700 1 _ |a Kacperek, Andrzej
|b 14
700 1 _ |a Jolly, Simon
|b 15
773 _ _ |a 10.1088/1361-6560/ad42fd
|0 PERI:(DE-600)1473501-5
|n 11
|p 115015
|t Physics in medicine and biology
|v 69
|y 2024
|x 0031-9155
856 4 _ |y OpenAccess
|u https://inrepo02.dkfz.de/record/289786/files/Shaikh_2024_Phys._Med._Biol._69_115015.pdf
856 4 _ |y OpenAccess
|x pdfa
|u https://inrepo02.dkfz.de/record/289786/files/Shaikh_2024_Phys._Med._Biol._69_115015.pdf?subformat=pdfa
909 C O |o oai:inrepo02.dkfz.de:289786
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 3
|6 P:(DE-He78)e37dd0bc6f3e4d55b7967219607e7d4e
913 1 _ |a DE-HGF
|b Gesundheit
|l Krebsforschung
|1 G:(DE-HGF)POF4-310
|0 G:(DE-HGF)POF4-315
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Bildgebung und Radioonkologie
|x 0
914 1 _ |y 2024
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2023-08-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2023-08-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2023-08-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2023-08-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2023-08-26
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b PHYS MED BIOL : 2022
|d 2023-08-26
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2023-08-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2023-08-26
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2023-08-26
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2023-08-26
915 _ _ |a National-Konsortium
|0 StatID:(DE-HGF)0430
|2 StatID
|d 2023-08-26
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2023-08-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2023-08-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2023-08-26
920 1 _ |0 I:(DE-He78)E040-20160331
|k E040
|l E040 Med. Physik in der Strahlentherapie
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-He78)E040-20160331
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21