000290379 001__ 290379
000290379 005__ 20250523132843.0
000290379 0247_ $$2doi$$a10.1002/nbm.5173
000290379 0247_ $$2pmid$$apmid:38783837
000290379 0247_ $$2ISSN$$a0952-3480
000290379 0247_ $$2ISSN$$a1099-1492
000290379 037__ $$aDKFZ-2024-01092
000290379 041__ $$aEnglish
000290379 082__ $$a610
000290379 1001_ $$aZhang, Ke$$b0
000290379 245__ $$aNavigator-based motion compensation for liver BOLD measurement with five-echo SAGE EPI and breath-hold task.
000290379 260__ $$aNew York, NY$$bWiley$$c2024
000290379 3367_ $$2DRIVER$$aarticle
000290379 3367_ $$2DataCite$$aOutput Types/Journal article
000290379 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1728989596_8009
000290379 3367_ $$2BibTeX$$aARTICLE
000290379 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000290379 3367_ $$00$$2EndNote$$aJournal Article
000290379 500__ $$a#LA:E010# / 2024 Oct;37(10):e5173
000290379 520__ $$aThe purpose of this work is to apply multi-echo spin- and gradient-echo (SAGE) echo-planar imaging (EPI) combined with a navigator-based (NAV) prospective motion compensation method for a quantitative liver blood oxygen level dependent (BOLD) measurement with a breath-hold (BH) task.A five-echo SAGE sequence was developed to quantitatively measure T2 and T2* to depict function with sufficient signal-to-noise ratio, spatial resolution and sensitivity to BOLD changes induced by the BH task. To account for respiratory motion, a navigator was employed in the form of a single gradient-echo projection readout, located at the diaphragm along the inferior-superior direction. Prior to each transverse imaging slice of the spin-echo EPI-based readouts, navigator acquisition and fat suppression were incorporated. Motion data was obtained from the navigator and transmitted back to the sequence, allowing real-time adjustments to slice positioning. Six healthy volunteers and three patients with liver carcinoma were included in this study. Quantitative T2 and T2* were calculated at each time point of the BH task. Parameters of t value from first-level analysis using a general linear model and hepatovascular reactivity (HVR) of Echo1, T2 and T2* were calculated.The motion caused by respiratory activity was successfully compensated using the navigator signal. The average changes of T2 and T2* during breath-hold were about 1% and 0.7%, respectively. With the help of NAV prospective motion compensation whole liver t values could be obtained without motion artifacts. The quantified liver T2 (34.7 ± 0.7 ms) and T2* (29 ± 1.2 ms) values agreed with values from literature. In healthy volunteers, the distribution of statistical t value and HVR was homogeneous throughout the whole liver. In patients with liver carcinoma, the distribution of t value and HVR was inhomogeneous due to metastases or therapy.This study demonstrates the feasibility of using a NAV prospective motion compensation technique in conjunction with five-echo SAGE EPI for the quantitative measurement of liver BOLD with a BH task.
000290379 536__ $$0G:(DE-HGF)POF4-315$$a315 - Bildgebung und Radioonkologie (POF4-315)$$cPOF4-315$$fPOF IV$$x0
000290379 588__ $$aDataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de
000290379 650_7 $$2Other$$ahepatovascular reactivity
000290379 650_7 $$2Other$$anavigator‐based slice tracking
000290379 650_7 $$2Other$$aprospective motion compensation
000290379 650_7 $$2Other$$aquantitative liver BOLD
000290379 7001_ $$aTriphan, Simon M F$$b1
000290379 7001_ $$aWielpütz, Mark O$$b2
000290379 7001_ $$0P:(DE-He78)a56941777fbaf0ca1008366e7e16667f$$aZiener, Christian H$$b3$$udkfz
000290379 7001_ $$0P:(DE-He78)022611a2317e4de40fd912e0a72293a8$$aLadd, Mark E$$b4$$udkfz
000290379 7001_ $$0P:(DE-He78)3d04c8fee58c9ab71f62ff80d06b6fec$$aSchlemmer, Heinz-Peter$$b5$$udkfz
000290379 7001_ $$aKauczor, Hans-Ulrich$$b6
000290379 7001_ $$0P:(DE-He78)82090937e7b88ac8ec70bbc40ad6b512$$aSedlaczek, Oliver$$b7$$udkfz
000290379 7001_ $$0P:(DE-He78)ea7f20e71e3cb1a864c23f2f09f0b0b9$$aKurz, Felix Tobias$$b8$$eLast author$$udkfz
000290379 773__ $$0PERI:(DE-600)2002003-X$$a10.1002/nbm.5173$$gp. e5173$$n10$$pe5173$$tNMR in biomedicine$$v37$$x0952-3480$$y2024
000290379 8564_ $$uhttps://inrepo02.dkfz.de/record/290379/files/NMR%20in%20Biomedicine%20-%202024%20-%20Zhang%20-%20Navigator%E2%80%90based%20motion%20compensation%20for%20liver%20BOLD%20measurement%20with%20five%E2%80%90echo%20SAGE%20EPI.pdf
000290379 8564_ $$uhttps://inrepo02.dkfz.de/record/290379/files/NMR%20in%20Biomedicine%20-%202024%20-%20Zhang%20-%20Navigator%E2%80%90based%20motion%20compensation%20for%20liver%20BOLD%20measurement%20with%20five%E2%80%90echo%20SAGE%20EPI.pdf?subformat=pdfa$$xpdfa
000290379 909CO $$ooai:inrepo02.dkfz.de:290379$$pVDB
000290379 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)a56941777fbaf0ca1008366e7e16667f$$aDeutsches Krebsforschungszentrum$$b3$$kDKFZ
000290379 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)022611a2317e4de40fd912e0a72293a8$$aDeutsches Krebsforschungszentrum$$b4$$kDKFZ
000290379 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)3d04c8fee58c9ab71f62ff80d06b6fec$$aDeutsches Krebsforschungszentrum$$b5$$kDKFZ
000290379 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)82090937e7b88ac8ec70bbc40ad6b512$$aDeutsches Krebsforschungszentrum$$b7$$kDKFZ
000290379 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)ea7f20e71e3cb1a864c23f2f09f0b0b9$$aDeutsches Krebsforschungszentrum$$b8$$kDKFZ
000290379 9131_ $$0G:(DE-HGF)POF4-315$$1G:(DE-HGF)POF4-310$$2G:(DE-HGF)POF4-300$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lKrebsforschung$$vBildgebung und Radioonkologie$$x0
000290379 9141_ $$y2024
000290379 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2023-10-22$$wger
000290379 915__ $$0StatID:(DE-HGF)3001$$2StatID$$aDEAL Wiley$$d2023-10-22$$wger
000290379 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-10-22
000290379 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-10-22
000290379 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-10-22
000290379 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2023-10-22
000290379 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-10-22
000290379 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2023-10-22
000290379 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2023-10-22
000290379 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bNMR BIOMED : 2022$$d2023-10-22
000290379 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2023-10-22
000290379 9202_ $$0I:(DE-He78)E010-20160331$$kE010$$lE010 Radiologie$$x0
000290379 9201_ $$0I:(DE-He78)E010-20160331$$kE010$$lE010 Radiologie$$x0
000290379 9201_ $$0I:(DE-He78)E020-20160331$$kE020$$lE020 Med. Physik in der Radiologie$$x1
000290379 980__ $$ajournal
000290379 980__ $$aVDB
000290379 980__ $$aI:(DE-He78)E010-20160331
000290379 980__ $$aI:(DE-He78)E020-20160331
000290379 980__ $$aUNRESTRICTED