Home > Publications database > Navigator-based motion compensation for liver BOLD measurement with five-echo SAGE EPI and breath-hold task. > print |
001 | 290379 | ||
005 | 20250523132843.0 | ||
024 | 7 | _ | |a 10.1002/nbm.5173 |2 doi |
024 | 7 | _ | |a pmid:38783837 |2 pmid |
024 | 7 | _ | |a 0952-3480 |2 ISSN |
024 | 7 | _ | |a 1099-1492 |2 ISSN |
037 | _ | _ | |a DKFZ-2024-01092 |
041 | _ | _ | |a English |
082 | _ | _ | |a 610 |
100 | 1 | _ | |a Zhang, Ke |b 0 |
245 | _ | _ | |a Navigator-based motion compensation for liver BOLD measurement with five-echo SAGE EPI and breath-hold task. |
260 | _ | _ | |a New York, NY |c 2024 |b Wiley |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1728989596_8009 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
500 | _ | _ | |a #LA:E010# / 2024 Oct;37(10):e5173 |
520 | _ | _ | |a The purpose of this work is to apply multi-echo spin- and gradient-echo (SAGE) echo-planar imaging (EPI) combined with a navigator-based (NAV) prospective motion compensation method for a quantitative liver blood oxygen level dependent (BOLD) measurement with a breath-hold (BH) task.A five-echo SAGE sequence was developed to quantitatively measure T2 and T2* to depict function with sufficient signal-to-noise ratio, spatial resolution and sensitivity to BOLD changes induced by the BH task. To account for respiratory motion, a navigator was employed in the form of a single gradient-echo projection readout, located at the diaphragm along the inferior-superior direction. Prior to each transverse imaging slice of the spin-echo EPI-based readouts, navigator acquisition and fat suppression were incorporated. Motion data was obtained from the navigator and transmitted back to the sequence, allowing real-time adjustments to slice positioning. Six healthy volunteers and three patients with liver carcinoma were included in this study. Quantitative T2 and T2* were calculated at each time point of the BH task. Parameters of t value from first-level analysis using a general linear model and hepatovascular reactivity (HVR) of Echo1, T2 and T2* were calculated.The motion caused by respiratory activity was successfully compensated using the navigator signal. The average changes of T2 and T2* during breath-hold were about 1% and 0.7%, respectively. With the help of NAV prospective motion compensation whole liver t values could be obtained without motion artifacts. The quantified liver T2 (34.7 ± 0.7 ms) and T2* (29 ± 1.2 ms) values agreed with values from literature. In healthy volunteers, the distribution of statistical t value and HVR was homogeneous throughout the whole liver. In patients with liver carcinoma, the distribution of t value and HVR was inhomogeneous due to metastases or therapy.This study demonstrates the feasibility of using a NAV prospective motion compensation technique in conjunction with five-echo SAGE EPI for the quantitative measurement of liver BOLD with a BH task. |
536 | _ | _ | |a 315 - Bildgebung und Radioonkologie (POF4-315) |0 G:(DE-HGF)POF4-315 |c POF4-315 |f POF IV |x 0 |
588 | _ | _ | |a Dataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de |
650 | _ | 7 | |a hepatovascular reactivity |2 Other |
650 | _ | 7 | |a navigator‐based slice tracking |2 Other |
650 | _ | 7 | |a prospective motion compensation |2 Other |
650 | _ | 7 | |a quantitative liver BOLD |2 Other |
700 | 1 | _ | |a Triphan, Simon M F |b 1 |
700 | 1 | _ | |a Wielpütz, Mark O |b 2 |
700 | 1 | _ | |a Ziener, Christian H |0 P:(DE-He78)a56941777fbaf0ca1008366e7e16667f |b 3 |u dkfz |
700 | 1 | _ | |a Ladd, Mark E |0 P:(DE-He78)022611a2317e4de40fd912e0a72293a8 |b 4 |u dkfz |
700 | 1 | _ | |a Schlemmer, Heinz-Peter |0 P:(DE-He78)3d04c8fee58c9ab71f62ff80d06b6fec |b 5 |u dkfz |
700 | 1 | _ | |a Kauczor, Hans-Ulrich |b 6 |
700 | 1 | _ | |a Sedlaczek, Oliver |0 P:(DE-He78)82090937e7b88ac8ec70bbc40ad6b512 |b 7 |u dkfz |
700 | 1 | _ | |a Kurz, Felix Tobias |0 P:(DE-He78)ea7f20e71e3cb1a864c23f2f09f0b0b9 |b 8 |e Last author |u dkfz |
773 | _ | _ | |a 10.1002/nbm.5173 |g p. e5173 |0 PERI:(DE-600)2002003-X |n 10 |p e5173 |t NMR in biomedicine |v 37 |y 2024 |x 0952-3480 |
856 | 4 | _ | |u https://inrepo02.dkfz.de/record/290379/files/NMR%20in%20Biomedicine%20-%202024%20-%20Zhang%20-%20Navigator%E2%80%90based%20motion%20compensation%20for%20liver%20BOLD%20measurement%20with%20five%E2%80%90echo%20SAGE%20EPI.pdf |
856 | 4 | _ | |u https://inrepo02.dkfz.de/record/290379/files/NMR%20in%20Biomedicine%20-%202024%20-%20Zhang%20-%20Navigator%E2%80%90based%20motion%20compensation%20for%20liver%20BOLD%20measurement%20with%20five%E2%80%90echo%20SAGE%20EPI.pdf?subformat=pdfa |x pdfa |
909 | C | O | |p VDB |o oai:inrepo02.dkfz.de:290379 |
910 | 1 | _ | |a Deutsches Krebsforschungszentrum |0 I:(DE-588b)2036810-0 |k DKFZ |b 3 |6 P:(DE-He78)a56941777fbaf0ca1008366e7e16667f |
910 | 1 | _ | |a Deutsches Krebsforschungszentrum |0 I:(DE-588b)2036810-0 |k DKFZ |b 4 |6 P:(DE-He78)022611a2317e4de40fd912e0a72293a8 |
910 | 1 | _ | |a Deutsches Krebsforschungszentrum |0 I:(DE-588b)2036810-0 |k DKFZ |b 5 |6 P:(DE-He78)3d04c8fee58c9ab71f62ff80d06b6fec |
910 | 1 | _ | |a Deutsches Krebsforschungszentrum |0 I:(DE-588b)2036810-0 |k DKFZ |b 7 |6 P:(DE-He78)82090937e7b88ac8ec70bbc40ad6b512 |
910 | 1 | _ | |a Deutsches Krebsforschungszentrum |0 I:(DE-588b)2036810-0 |k DKFZ |b 8 |6 P:(DE-He78)ea7f20e71e3cb1a864c23f2f09f0b0b9 |
913 | 1 | _ | |a DE-HGF |b Gesundheit |l Krebsforschung |1 G:(DE-HGF)POF4-310 |0 G:(DE-HGF)POF4-315 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-300 |4 G:(DE-HGF)POF |v Bildgebung und Radioonkologie |x 0 |
914 | 1 | _ | |y 2024 |
915 | _ | _ | |a Nationallizenz |0 StatID:(DE-HGF)0420 |2 StatID |d 2023-10-22 |w ger |
915 | _ | _ | |a DEAL Wiley |0 StatID:(DE-HGF)3001 |2 StatID |d 2023-10-22 |w ger |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2023-10-22 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2023-10-22 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2023-10-22 |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2023-10-22 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2023-10-22 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1030 |2 StatID |b Current Contents - Life Sciences |d 2023-10-22 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2023-10-22 |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b NMR BIOMED : 2022 |d 2023-10-22 |
915 | _ | _ | |a IF < 5 |0 StatID:(DE-HGF)9900 |2 StatID |d 2023-10-22 |
920 | 2 | _ | |0 I:(DE-He78)E010-20160331 |k E010 |l E010 Radiologie |x 0 |
920 | 1 | _ | |0 I:(DE-He78)E010-20160331 |k E010 |l E010 Radiologie |x 0 |
920 | 1 | _ | |0 I:(DE-He78)E020-20160331 |k E020 |l E020 Med. Physik in der Radiologie |x 1 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a I:(DE-He78)E010-20160331 |
980 | _ | _ | |a I:(DE-He78)E020-20160331 |
980 | _ | _ | |a UNRESTRICTED |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|