000294078 001__ 294078
000294078 005__ 20241120114838.0
000294078 0247_ $$2doi$$a10.1038/s41598-024-74324-5
000294078 0247_ $$2pmid$$apmid:39420030
000294078 0247_ $$2pmc$$apmc:PMC11487170
000294078 0247_ $$2altmetric$$aaltmetric:169443743
000294078 037__ $$aDKFZ-2024-02099
000294078 041__ $$aEnglish
000294078 082__ $$a600
000294078 1001_ $$aWeir, Kurt$$b0
000294078 245__ $$aIdentification of shared gene expression programs activated in multiple modes of torpor across vertebrate clades.
000294078 260__ $$a[London]$$bMacmillan Publishers Limited, part of Springer Nature$$c2024
000294078 3367_ $$2DRIVER$$aarticle
000294078 3367_ $$2DataCite$$aOutput Types/Journal article
000294078 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1729518083_14085
000294078 3367_ $$2BibTeX$$aARTICLE
000294078 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000294078 3367_ $$00$$2EndNote$$aJournal Article
000294078 520__ $$aTorpor encompasses diverse adaptations to extreme environmental stressors such as hibernation, aestivation, brumation, and daily torpor. Here we introduce StrokeofGenus, an analytic pipeline that identifies distinct transcriptomic states and shared gene expression patterns across studies, tissues, and species. We use StrokeofGenus to study multiple and diverse forms of torpor from publicly-available RNA-seq datasets that span eight species and two classes. We identify three transcriptionally distinct states during the cycle of heterothermia: euthermia, torpor, and interbout arousal. We also identify torpor-specific gene expression patterns that are shared both across tissues and between species with over three hundred million years of evolutionary divergence. We further demonstrate the general sharing of gene expression patterns in multiple forms of torpor, implying a common evolutionary origin for this process. Although here we apply StrokeofGenus to analysis of torpor, it can be used to interrogate any other complex physiological processes defined by transient transcriptomic states.
000294078 536__ $$0G:(DE-HGF)POF4-311$$a311 - Zellbiologie und Tumorbiologie (POF4-311)$$cPOF4-311$$fPOF IV$$x0
000294078 588__ $$aDataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de
000294078 650_2 $$2MeSH$$aAnimals
000294078 650_2 $$2MeSH$$aTorpor: genetics
000294078 650_2 $$2MeSH$$aVertebrates: genetics
000294078 650_2 $$2MeSH$$aTranscriptome
000294078 650_2 $$2MeSH$$aGene Expression Profiling: methods
000294078 650_2 $$2MeSH$$aHibernation: genetics
000294078 650_2 $$2MeSH$$aGene Expression Regulation
000294078 650_2 $$2MeSH$$aBiological Evolution
000294078 7001_ $$aVega, Natasha$$b1
000294078 7001_ $$0P:(DE-He78)4e6ef8ba5d3b3e37421c25975ad64d4f$$aBusa, Veronica$$b2$$udkfz
000294078 7001_ $$aSajdak, Ben$$b3
000294078 7001_ $$aKallestad, Les$$b4
000294078 7001_ $$aMerriman, Dana$$b5
000294078 7001_ $$aPalczewski, Krzysztof$$b6
000294078 7001_ $$aCarroll, Joseph$$b7
000294078 7001_ $$aBlackshaw, Seth$$b8
000294078 773__ $$0PERI:(DE-600)2615211-3$$a10.1038/s41598-024-74324-5$$gVol. 14, no. 1, p. 24360$$n1$$p24360$$tScientific reports$$v14$$x2045-2322$$y2024
000294078 8564_ $$uhttps://inrepo02.dkfz.de/record/294078/files/s41598-024-74324-5.pdf
000294078 8564_ $$uhttps://inrepo02.dkfz.de/record/294078/files/s41598-024-74324-5.pdf?subformat=pdfa$$xpdfa
000294078 909CO $$ooai:inrepo02.dkfz.de:294078$$pVDB
000294078 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)4e6ef8ba5d3b3e37421c25975ad64d4f$$aDeutsches Krebsforschungszentrum$$b2$$kDKFZ
000294078 9131_ $$0G:(DE-HGF)POF4-311$$1G:(DE-HGF)POF4-310$$2G:(DE-HGF)POF4-300$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lKrebsforschung$$vZellbiologie und Tumorbiologie$$x0
000294078 9141_ $$y2024
000294078 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bSCI REP-UK : 2022$$d2023-08-24
000294078 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-08-24
000294078 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-08-24
000294078 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central$$d2023-08-24
000294078 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2023-04-12T15:11:06Z
000294078 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2023-04-12T15:11:06Z
000294078 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Anonymous peer review$$d2023-04-12T15:11:06Z
000294078 915__ $$0LIC:(DE-HGF)CCBYNV$$2V:(DE-HGF)$$aCreative Commons Attribution CC BY (No Version)$$bDOAJ$$d2023-04-12T15:11:06Z
000294078 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2023-08-24
000294078 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2023-08-24
000294078 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-08-24
000294078 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2023-08-24
000294078 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2023-08-24
000294078 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-08-24
000294078 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2023-08-24
000294078 915__ $$0StatID:(DE-HGF)1040$$2StatID$$aDBCoverage$$bZoological Record$$d2023-08-24
000294078 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2023-08-24
000294078 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2023-08-24
000294078 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2023-08-24
000294078 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2023-08-24
000294078 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2023-08-24
000294078 9201_ $$0I:(DE-He78)A350-20160331$$kA350$$lA350 Reguläre Mechanismen der Genexpression$$x0
000294078 980__ $$ajournal
000294078 980__ $$aVDB
000294078 980__ $$aI:(DE-He78)A350-20160331
000294078 980__ $$aUNRESTRICTED