001     294310
005     20250210095039.0
024 7 _ |a 10.1016/S2589-7500(24)00154-7
|2 doi
024 7 _ |a pmid:39455194
|2 pmid
024 7 _ |a altmetric:169627205
|2 altmetric
037 _ _ |a DKFZ-2024-02143
041 _ _ |a English
082 _ _ |a 610
100 1 _ |a Ma, Jun
|b 0
245 _ _ |a Unleashing the strengths of unlabelled data in deep learning-assisted pan-cancer abdominal organ quantification: the FLARE22 challenge.
260 _ _ |a London
|c 2024
|b The Lancet
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1739177398_9306
|2 PUB:(DE-HGF)
|x Review Article
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Deep learning has shown great potential to automate abdominal organ segmentation and quantification. However, most existing algorithms rely on expert annotations and do not have comprehensive evaluations in real-world multinational settings. To address these limitations, we organised the FLARE 2022 challenge to benchmark fast, low-resource, and accurate abdominal organ segmentation algorithms. We first constructed an intercontinental abdomen CT dataset from more than 50 clinical research groups. We then independently validated that deep learning algorithms achieved a median dice similarity coefficient (DSC) of 90·0% (IQR 87·4-91·3%) by use of 50 labelled images and 2000 unlabelled images, which can substantially reduce manual annotation costs. The best-performing algorithms successfully generalised to holdout external validation sets, achieving a median DSC of 89·4% (85·2-91·3%), 90·0% (84·3-93·0%), and 88·5% (80·9-91·9%) on North American, European, and Asian cohorts, respectively. These algorithms show the potential to use unlabelled data to boost performance and alleviate annotation shortages for modern artificial intelligence models.
536 _ _ |a 315 - Bildgebung und Radioonkologie (POF4-315)
|0 G:(DE-HGF)POF4-315
|c POF4-315
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de
650 _ 2 |a Deep Learning
|2 MeSH
650 _ 2 |a Humans
|2 MeSH
650 _ 2 |a Tomography, X-Ray Computed
|2 MeSH
650 _ 2 |a Algorithms
|2 MeSH
650 _ 2 |a Abdomen: diagnostic imaging
|2 MeSH
700 1 _ |a Zhang, Yao
|b 1
700 1 _ |a Gu, Song
|b 2
700 1 _ |a Ge, Cheng
|b 3
700 1 _ |a Mae, Shihao
|b 4
700 1 _ |a Young, Adamo
|b 5
700 1 _ |a Zhu, Cheng
|b 6
700 1 _ |a Yang, Xin
|b 7
700 1 _ |a Meng, Kangkang
|b 8
700 1 _ |a Huang, Ziyan
|b 9
700 1 _ |a Zhang, Fan
|b 10
700 1 _ |a Pan, Yuanke
|b 11
700 1 _ |a Huang, Shoujin
|b 12
700 1 _ |a Wang, Jiacheng
|b 13
700 1 _ |a Sun, Mingze
|b 14
700 1 _ |a Zhang, Rongguo
|b 15
700 1 _ |a Jia, Dengqiang
|b 16
700 1 _ |a Choi, Jae Won
|b 17
700 1 _ |a Alves, Natália
|b 18
700 1 _ |a de Wilde, Bram
|b 19
700 1 _ |a Koehler, Gregor
|0 P:(DE-HGF)0
|b 20
700 1 _ |a Lai, Haoran
|b 21
700 1 _ |a Wang, Ershuai
|b 22
700 1 _ |a Wiesenfarth, Manuel
|0 P:(DE-He78)1042737c83ba70ec508bdd99f0096864
|b 23
700 1 _ |a Zhu, Qiongjie
|b 24
700 1 _ |a Dong, Guoqiang
|b 25
700 1 _ |a He, Jian
|b 26
700 1 _ |a Consortium, FLARE Challenge
|b 27
|e Collaboration Author
700 1 _ |a Wang, Bo
|b 28
700 1 _ |a He, Junjun
|b 29
|e Contributor
700 1 _ |a Yang, Hua
|b 30
|e Contributor
700 1 _ |a Huang, Bingding
|b 31
|e Contributor
700 1 _ |a Lyu, Mengye
|b 32
|e Contributor
700 1 _ |a Ma, Yongkang
|b 33
|e Contributor
700 1 _ |a Guo, Heng
|b 34
|e Contributor
700 1 _ |a Xu, Weixin
|b 35
|e Contributor
700 1 _ |a Maier-Hein, Klaus
|0 P:(DE-He78)33c74005e1ce56f7025c4f6be15321b3
|b 36
|u dkfz
700 1 _ |a Wu, Yajun
|b 37
|e Contributor
773 _ _ |a 10.1016/S2589-7500(24)00154-7
|g Vol. 6, no. 11, p. e815 - e826
|0 PERI:(DE-600)2972368-1
|n 11
|p e815 - e826
|t The lancet / Digital health
|v 6
|y 2024
|x 2589-7500
909 C O |p VDB
|o oai:inrepo02.dkfz.de:294310
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 20
|6 P:(DE-HGF)0
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 23
|6 P:(DE-He78)1042737c83ba70ec508bdd99f0096864
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 36
|6 P:(DE-He78)33c74005e1ce56f7025c4f6be15321b3
913 1 _ |a DE-HGF
|b Gesundheit
|l Krebsforschung
|1 G:(DE-HGF)POF4-310
|0 G:(DE-HGF)POF4-315
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Bildgebung und Radioonkologie
|x 0
914 1 _ |y 2024
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b LANCET DIGIT HEALTH : 2022
|d 2023-08-23
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2023-08-23
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2023-08-23
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2023-05-02T08:53:13Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2023-05-02T08:53:13Z
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Anonymous peer review
|d 2023-05-02T08:53:13Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2023-08-23
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2023-08-23
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2023-08-23
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2023-08-23
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1110
|2 StatID
|b Current Contents - Clinical Medicine
|d 2023-08-23
915 _ _ |a IF >= 30
|0 StatID:(DE-HGF)9930
|2 StatID
|b LANCET DIGIT HEALTH : 2022
|d 2023-08-23
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2023-08-23
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2023-08-23
920 1 _ |0 I:(DE-He78)E230-20160331
|k E230
|l E230 Medizinische Bildverarbeitung
|x 0
920 1 _ |0 I:(DE-He78)C060-20160331
|k C060
|l C060 Biostatistik
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)E230-20160331
980 _ _ |a I:(DE-He78)C060-20160331
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21