Home > Publications database > Unleashing the strengths of unlabelled data in deep learning-assisted pan-cancer abdominal organ quantification: the FLARE22 challenge. > print |
001 | 294310 | ||
005 | 20250210095039.0 | ||
024 | 7 | _ | |a 10.1016/S2589-7500(24)00154-7 |2 doi |
024 | 7 | _ | |a pmid:39455194 |2 pmid |
024 | 7 | _ | |a altmetric:169627205 |2 altmetric |
037 | _ | _ | |a DKFZ-2024-02143 |
041 | _ | _ | |a English |
082 | _ | _ | |a 610 |
100 | 1 | _ | |a Ma, Jun |b 0 |
245 | _ | _ | |a Unleashing the strengths of unlabelled data in deep learning-assisted pan-cancer abdominal organ quantification: the FLARE22 challenge. |
260 | _ | _ | |a London |c 2024 |b The Lancet |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1739177398_9306 |2 PUB:(DE-HGF) |x Review Article |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a Deep learning has shown great potential to automate abdominal organ segmentation and quantification. However, most existing algorithms rely on expert annotations and do not have comprehensive evaluations in real-world multinational settings. To address these limitations, we organised the FLARE 2022 challenge to benchmark fast, low-resource, and accurate abdominal organ segmentation algorithms. We first constructed an intercontinental abdomen CT dataset from more than 50 clinical research groups. We then independently validated that deep learning algorithms achieved a median dice similarity coefficient (DSC) of 90·0% (IQR 87·4-91·3%) by use of 50 labelled images and 2000 unlabelled images, which can substantially reduce manual annotation costs. The best-performing algorithms successfully generalised to holdout external validation sets, achieving a median DSC of 89·4% (85·2-91·3%), 90·0% (84·3-93·0%), and 88·5% (80·9-91·9%) on North American, European, and Asian cohorts, respectively. These algorithms show the potential to use unlabelled data to boost performance and alleviate annotation shortages for modern artificial intelligence models. |
536 | _ | _ | |a 315 - Bildgebung und Radioonkologie (POF4-315) |0 G:(DE-HGF)POF4-315 |c POF4-315 |f POF IV |x 0 |
588 | _ | _ | |a Dataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de |
650 | _ | 2 | |a Deep Learning |2 MeSH |
650 | _ | 2 | |a Humans |2 MeSH |
650 | _ | 2 | |a Tomography, X-Ray Computed |2 MeSH |
650 | _ | 2 | |a Algorithms |2 MeSH |
650 | _ | 2 | |a Abdomen: diagnostic imaging |2 MeSH |
700 | 1 | _ | |a Zhang, Yao |b 1 |
700 | 1 | _ | |a Gu, Song |b 2 |
700 | 1 | _ | |a Ge, Cheng |b 3 |
700 | 1 | _ | |a Mae, Shihao |b 4 |
700 | 1 | _ | |a Young, Adamo |b 5 |
700 | 1 | _ | |a Zhu, Cheng |b 6 |
700 | 1 | _ | |a Yang, Xin |b 7 |
700 | 1 | _ | |a Meng, Kangkang |b 8 |
700 | 1 | _ | |a Huang, Ziyan |b 9 |
700 | 1 | _ | |a Zhang, Fan |b 10 |
700 | 1 | _ | |a Pan, Yuanke |b 11 |
700 | 1 | _ | |a Huang, Shoujin |b 12 |
700 | 1 | _ | |a Wang, Jiacheng |b 13 |
700 | 1 | _ | |a Sun, Mingze |b 14 |
700 | 1 | _ | |a Zhang, Rongguo |b 15 |
700 | 1 | _ | |a Jia, Dengqiang |b 16 |
700 | 1 | _ | |a Choi, Jae Won |b 17 |
700 | 1 | _ | |a Alves, Natália |b 18 |
700 | 1 | _ | |a de Wilde, Bram |b 19 |
700 | 1 | _ | |a Koehler, Gregor |0 P:(DE-HGF)0 |b 20 |
700 | 1 | _ | |a Lai, Haoran |b 21 |
700 | 1 | _ | |a Wang, Ershuai |b 22 |
700 | 1 | _ | |a Wiesenfarth, Manuel |0 P:(DE-He78)1042737c83ba70ec508bdd99f0096864 |b 23 |
700 | 1 | _ | |a Zhu, Qiongjie |b 24 |
700 | 1 | _ | |a Dong, Guoqiang |b 25 |
700 | 1 | _ | |a He, Jian |b 26 |
700 | 1 | _ | |a Consortium, FLARE Challenge |b 27 |e Collaboration Author |
700 | 1 | _ | |a Wang, Bo |b 28 |
700 | 1 | _ | |a He, Junjun |b 29 |e Contributor |
700 | 1 | _ | |a Yang, Hua |b 30 |e Contributor |
700 | 1 | _ | |a Huang, Bingding |b 31 |e Contributor |
700 | 1 | _ | |a Lyu, Mengye |b 32 |e Contributor |
700 | 1 | _ | |a Ma, Yongkang |b 33 |e Contributor |
700 | 1 | _ | |a Guo, Heng |b 34 |e Contributor |
700 | 1 | _ | |a Xu, Weixin |b 35 |e Contributor |
700 | 1 | _ | |a Maier-Hein, Klaus |0 P:(DE-He78)33c74005e1ce56f7025c4f6be15321b3 |b 36 |u dkfz |
700 | 1 | _ | |a Wu, Yajun |b 37 |e Contributor |
773 | _ | _ | |a 10.1016/S2589-7500(24)00154-7 |g Vol. 6, no. 11, p. e815 - e826 |0 PERI:(DE-600)2972368-1 |n 11 |p e815 - e826 |t The lancet / Digital health |v 6 |y 2024 |x 2589-7500 |
909 | C | O | |p VDB |o oai:inrepo02.dkfz.de:294310 |
910 | 1 | _ | |a Deutsches Krebsforschungszentrum |0 I:(DE-588b)2036810-0 |k DKFZ |b 20 |6 P:(DE-HGF)0 |
910 | 1 | _ | |a Deutsches Krebsforschungszentrum |0 I:(DE-588b)2036810-0 |k DKFZ |b 23 |6 P:(DE-He78)1042737c83ba70ec508bdd99f0096864 |
910 | 1 | _ | |a Deutsches Krebsforschungszentrum |0 I:(DE-588b)2036810-0 |k DKFZ |b 36 |6 P:(DE-He78)33c74005e1ce56f7025c4f6be15321b3 |
913 | 1 | _ | |a DE-HGF |b Gesundheit |l Krebsforschung |1 G:(DE-HGF)POF4-310 |0 G:(DE-HGF)POF4-315 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-300 |4 G:(DE-HGF)POF |v Bildgebung und Radioonkologie |x 0 |
914 | 1 | _ | |y 2024 |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b LANCET DIGIT HEALTH : 2022 |d 2023-08-23 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2023-08-23 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2023-08-23 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0501 |2 StatID |b DOAJ Seal |d 2023-05-02T08:53:13Z |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0500 |2 StatID |b DOAJ |d 2023-05-02T08:53:13Z |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b DOAJ : Anonymous peer review |d 2023-05-02T08:53:13Z |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2023-08-23 |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2023-08-23 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2023-08-23 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2023-08-23 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1110 |2 StatID |b Current Contents - Clinical Medicine |d 2023-08-23 |
915 | _ | _ | |a IF >= 30 |0 StatID:(DE-HGF)9930 |2 StatID |b LANCET DIGIT HEALTH : 2022 |d 2023-08-23 |
915 | _ | _ | |a Article Processing Charges |0 StatID:(DE-HGF)0561 |2 StatID |d 2023-08-23 |
915 | _ | _ | |a Fees |0 StatID:(DE-HGF)0700 |2 StatID |d 2023-08-23 |
920 | 1 | _ | |0 I:(DE-He78)E230-20160331 |k E230 |l E230 Medizinische Bildverarbeitung |x 0 |
920 | 1 | _ | |0 I:(DE-He78)C060-20160331 |k C060 |l C060 Biostatistik |x 1 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a I:(DE-He78)E230-20160331 |
980 | _ | _ | |a I:(DE-He78)C060-20160331 |
980 | _ | _ | |a UNRESTRICTED |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|