Journal Article (Review Article) DKFZ-2024-02143

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Unleashing the strengths of unlabelled data in deep learning-assisted pan-cancer abdominal organ quantification: the FLARE22 challenge.

 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;

2024
The Lancet London

The lancet / Digital health 6(11), e815 - e826 () [10.1016/S2589-7500(24)00154-7]
 GO

This record in other databases:  

Please use a persistent id in citations: doi:

Abstract: Deep learning has shown great potential to automate abdominal organ segmentation and quantification. However, most existing algorithms rely on expert annotations and do not have comprehensive evaluations in real-world multinational settings. To address these limitations, we organised the FLARE 2022 challenge to benchmark fast, low-resource, and accurate abdominal organ segmentation algorithms. We first constructed an intercontinental abdomen CT dataset from more than 50 clinical research groups. We then independently validated that deep learning algorithms achieved a median dice similarity coefficient (DSC) of 90·0% (IQR 87·4-91·3%) by use of 50 labelled images and 2000 unlabelled images, which can substantially reduce manual annotation costs. The best-performing algorithms successfully generalised to holdout external validation sets, achieving a median DSC of 89·4% (85·2-91·3%), 90·0% (84·3-93·0%), and 88·5% (80·9-91·9%) on North American, European, and Asian cohorts, respectively. These algorithms show the potential to use unlabelled data to boost performance and alleviate annotation shortages for modern artificial intelligence models.

Keyword(s): Deep Learning (MeSH) ; Humans (MeSH) ; Tomography, X-Ray Computed (MeSH) ; Algorithms (MeSH) ; Abdomen: diagnostic imaging (MeSH)

Classification:

Contributing Institute(s):
  1. E230 Medizinische Bildverarbeitung (E230)
  2. C060 Biostatistik (C060)
Research Program(s):
  1. 315 - Bildgebung und Radioonkologie (POF4-315) (POF4-315)

Appears in the scientific report 2024
Database coverage:
Medline ; DOAJ ; Article Processing Charges ; Clarivate Analytics Master Journal List ; Current Contents - Clinical Medicine ; DOAJ Seal ; Essential Science Indicators ; Fees ; IF >= 30 ; JCR ; SCOPUS ; Science Citation Index Expanded ; Web of Science Core Collection
Click to display QR Code for this record

The record appears in these collections:
Document types > Articles > Journal Article
Public records
Publications database

 Record created 2024-10-28, last modified 2025-02-10



Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)