000294782 001__ 294782
000294782 005__ 20250507114525.0
000294782 0247_ $$2doi$$a10.1097/RLI.0000000000001139
000294782 0247_ $$2pmid$$apmid:39621870
000294782 0247_ $$2ISSN$$a0020-9996
000294782 0247_ $$2ISSN$$a1536-0210
000294782 037__ $$aDKFZ-2024-02497
000294782 041__ $$aEnglish
000294782 082__ $$a610
000294782 1001_ $$00000-0002-6531-4049$$aSkwierawska, Dominika$$b0
000294782 245__ $$aRelevance of Prostatic Fluid on the Apparent Diffusion Coefficient: An Inversion Recovery Diffusion-Weighted Imaging Investigation.
000294782 260__ $$a[Erscheinungsort nicht ermittelbar]$$bOvid$$c2025
000294782 3367_ $$2DRIVER$$aarticle
000294782 3367_ $$2DataCite$$aOutput Types/Journal article
000294782 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1746611073_3747
000294782 3367_ $$2BibTeX$$aARTICLE
000294782 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000294782 3367_ $$00$$2EndNote$$aJournal Article
000294782 500__ $$a2025 Jun 1;60(6):357-368
000294782 520__ $$aDiffusion-weighted imaging (DWI) is pivotal for prostate magnetic resonance imaging. This is rooted in the generally reduced apparent diffusion coefficient (ADC) observed in prostate cancer in comparison to healthy prostate tissue. This difference originates from microstructural tissue composition changes, including a potentially decreased fluid-containing lumen volume. This study explored the nature of the observed ADC contrast in prostate tissue through inversion recovery-prepared DWI examinations that generated varying levels of fluid suppression.This institutional review board-approved, single-center, prospective study was conducted from 2023 to 2024; all participants underwent magnetic resonance imaging including DWI with b-values of 50 and 800 s/mm2 at 16 inversion times (TI; 60-4000 milliseconds). The measured ADC was interpreted with a 2-compartment model (compartments: tissue and fluid). Descriptive statistics were computed for all analyzed parameters.Twelve healthy male volunteers (45 ± 17 years) and 1 patient with prostate adenocarcinoma (66 years) were evaluated. The ADC map appearance depended heavily on the TI, and we observed a feature-rich ADC(TI) curve. The ADC in the transition zone (TZ) of healthy volunteers increased between TI = 60 milliseconds and approximately 1100 milliseconds, then dropped drastically before increasing again, stabilizing at a very high TI. This effect was greatly reduced in the patient's prostate cancer lesion. The 2-compartment model described this behavior well. After the inversion, tissue magnetization recovers faster, decreasing its signal contribution in absolute terms and resulting in an increase in the ADC. At the tipping point, the total magnetization is zero at b = 0, when the positive tissue magnetization and still-inverted fluid magnetization cancel out. A small diffusion encoding leads to a positive signal, thus generating an infinite ADC. After the tipping point, the fluid magnetization remains negative and thereby reduces the ADC.Prostate fluid appears to contribute significantly to prostate ADCs. Its contribution could be adjusted by choosing an appropriate inversion recovery preparation, potentially enhancing contrast for prostate cancer lesions.
000294782 536__ $$0G:(DE-HGF)POF4-315$$a315 - Bildgebung und Radioonkologie (POF4-315)$$cPOF4-315$$fPOF IV$$x0
000294782 588__ $$aDataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de
000294782 7001_ $$aBickelhaupt, Sebastian$$b1
000294782 7001_ $$aBachl, Maximilian$$b2
000294782 7001_ $$aJanka, Rolf$$b3
000294782 7001_ $$aMurr, Martina$$b4
000294782 7001_ $$aGloger, Felix$$b5
000294782 7001_ $$0P:(DE-He78)59dfdd0ee0a7f0db81535f0781a3a6d6$$aKuder, Tristan A$$b6$$udkfz
000294782 7001_ $$aZaiss, Moritz$$b7
000294782 7001_ $$aHadler, Dominique$$b8
000294782 7001_ $$aUder, Michael$$b9
000294782 7001_ $$aLaun, Frederik B$$b10
000294782 773__ $$0PERI:(DE-600)2041543-6$$a10.1097/RLI.0000000000001139$$n6$$p357-368$$tInvestigative radiology$$v60$$x0020-9996$$y2025
000294782 909CO $$ooai:inrepo02.dkfz.de:294782$$pVDB
000294782 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)59dfdd0ee0a7f0db81535f0781a3a6d6$$aDeutsches Krebsforschungszentrum$$b6$$kDKFZ
000294782 9131_ $$0G:(DE-HGF)POF4-315$$1G:(DE-HGF)POF4-310$$2G:(DE-HGF)POF4-300$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lKrebsforschung$$vBildgebung und Radioonkologie$$x0
000294782 9141_ $$y2024
000294782 915__ $$0StatID:(DE-HGF)0410$$2StatID$$aAllianz-Lizenz$$d2023-10-24$$wger
000294782 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-10-24
000294782 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-10-24
000294782 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2023-10-24
000294782 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2023-10-24
000294782 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-10-24
000294782 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2023-10-24
000294782 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2023-10-24
000294782 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2023-10-24
000294782 915__ $$0StatID:(DE-HGF)1110$$2StatID$$aDBCoverage$$bCurrent Contents - Clinical Medicine$$d2023-10-24
000294782 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bINVEST RADIOL : 2022$$d2023-10-24
000294782 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-10-24
000294782 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bINVEST RADIOL : 2022$$d2023-10-24
000294782 9201_ $$0I:(DE-He78)E020-20160331$$kE020$$lE020 Med. Physik in der Radiologie$$x0
000294782 980__ $$ajournal
000294782 980__ $$aVDB
000294782 980__ $$aI:(DE-He78)E020-20160331
000294782 980__ $$aUNRESTRICTED