000298578 001__ 298578
000298578 005__ 20250415151210.0
000298578 0247_ $$2doi$$a10.1177/02841851241313021
000298578 0247_ $$2pmid$$apmid:39905712
000298578 0247_ $$2ISSN$$a0567-8056
000298578 0247_ $$2ISSN$$a0284-1851
000298578 0247_ $$2ISSN$$a0001-6926
000298578 0247_ $$2ISSN$$a0365-5954
000298578 0247_ $$2ISSN$$a1600-0455
000298578 037__ $$aDKFZ-2025-00295
000298578 041__ $$aEnglish
000298578 082__ $$a610
000298578 1001_ $$0P:(DE-He78)bb99ed05244bff1747c47fc8a34c1795$$aMokry, Theresa$$b0$$eFirst author$$udkfz
000298578 245__ $$aInfluence of field strength on quantitative parameters and feature stability in the assessment of the ovaries using 1.5-T and 3-T MRI.
000298578 260__ $$aLondon$$bSage$$c2025
000298578 3367_ $$2DRIVER$$aarticle
000298578 3367_ $$2DataCite$$aOutput Types/Journal article
000298578 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1744722695_5439
000298578 3367_ $$2BibTeX$$aARTICLE
000298578 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000298578 3367_ $$00$$2EndNote$$aJournal Article
000298578 500__ $$a2025 May;66(5):512-520
000298578 520__ $$aLittle is known of the influence of scanner field strength on quantitative diffusivity variables, especially kurtosis in healthy ovaries.To evaluate the influence of scanner field strength on quantitative diffusion variables in pelvic MRI of the ovaries.This prospective, single-centre study consisted of repeated 1.5-T and 3-T examinations in 30 female volunteers (mean age=27.9 years, age range=20.3-45.2 years) from July 2017 to September 2019. Multi b-value DWI 0, 50, 100, 800, 1500, 2000 s/mm2 was acquired over three timepoints during the menstrual cycle. Ovaries were segmented at b = 1500 s/mm2. Median apparent diffusion coefficient (ADC) and advanced kurtosis parameters Dapp and Kapp were calculated. Statistical analysis was performed with the variations of diffusivity variables being compared between 1.5-T and 3-T MRI using a Mann-Whitney rank-sum test.Median ADC and Dapp (µm²/ms) did not statistically differ. Median ADC were 1.509 (range=1.371-1.610), 1.619 (range=1.463-1.747), and 1.511 (range=1.423-1.639) at 1.5 T; 1.542 (range=1.428-1.682), 1.658 (range=1.510-1.806), and 1.572 (range=1.455-1.709) at 3 T (P = 0.14, 0.19, and 0.07), whereas median Dapp were 2.024 (range=1.913-2.152), 2.192 (range=2.010-2.327), and 2.045 (range=1.958-2.170) at 1.5 T; 2.013 (range=1.952-2.188), 2.179 (range=2.018-2.327), and 2.082 (range=1.959-2.194) at 3 T (P = 0.77, 0.99, and 0.34) for timepoints 1, 2, and 3, respectively. Statistical comparison of Kapp revealed significant differences for all timepoints: 0.629 (range=0.595-0.652), 0.604 (range=0.574-0.651), and 0.622 (range=0.581-0.664) at 1.5 T; 0.601 (range=0.563-0.626), 0.567 (range=0.526-0.633), and 0.599 (range=0.541-0.650) at 3 T (P < 0.001, 0.005, and 0.03).Diffusivity mapping in the ovaries provides similar absolute median diffusion values, but statistically significant differences in absolute kurtosis values between 1.5 T and 3 T.
000298578 536__ $$0G:(DE-HGF)POF4-315$$a315 - Bildgebung und Radioonkologie (POF4-315)$$cPOF4-315$$fPOF IV$$x0
000298578 588__ $$aDataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de
000298578 650_7 $$2Other$$aGenital
000298578 650_7 $$2Other$$aadults
000298578 650_7 $$2Other$$amagnetic resonance diffusion/perfusion
000298578 650_7 $$2Other$$aovaries
000298578 650_7 $$2Other$$areproductive
000298578 7001_ $$aPantke, Judith$$b1
000298578 7001_ $$aKauczor, Hans-Ulrich$$b2
000298578 7001_ $$aLaun, Frederik B$$b3
000298578 7001_ $$0P:(DE-He78)3d04c8fee58c9ab71f62ff80d06b6fec$$aSchlemmer, Heinz-Peter$$b4$$udkfz
000298578 7001_ $$0P:(DE-He78)59dfdd0ee0a7f0db81535f0781a3a6d6$$aKuder, Tristan Anselm$$b5$$udkfz
000298578 7001_ $$aBickelhaupt, Sebastian$$b6
000298578 773__ $$0PERI:(DE-600)2024579-8$$a10.1177/02841851241313021$$gp. 02841851241313021$$n5$$p512-520$$tActa radiologica$$v66$$x0567-8056$$y2025
000298578 909CO $$ooai:inrepo02.dkfz.de:298578$$pVDB
000298578 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)bb99ed05244bff1747c47fc8a34c1795$$aDeutsches Krebsforschungszentrum$$b0$$kDKFZ
000298578 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)3d04c8fee58c9ab71f62ff80d06b6fec$$aDeutsches Krebsforschungszentrum$$b4$$kDKFZ
000298578 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)59dfdd0ee0a7f0db81535f0781a3a6d6$$aDeutsches Krebsforschungszentrum$$b5$$kDKFZ
000298578 9131_ $$0G:(DE-HGF)POF4-315$$1G:(DE-HGF)POF4-310$$2G:(DE-HGF)POF4-300$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lKrebsforschung$$vBildgebung und Radioonkologie$$x0
000298578 9141_ $$y2025
000298578 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium$$d2024-12-20$$wger
000298578 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-20
000298578 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-20
000298578 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-20
000298578 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2024-12-20
000298578 915__ $$0StatID:(DE-HGF)1110$$2StatID$$aDBCoverage$$bCurrent Contents - Clinical Medicine$$d2024-12-20
000298578 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2024-12-20
000298578 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-20
000298578 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bACTA RADIOL : 2022$$d2024-12-20
000298578 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2024-12-20
000298578 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2024-12-20
000298578 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2024-12-20
000298578 9201_ $$0I:(DE-He78)E010-20160331$$kE010$$lE010 Radiologie$$x0
000298578 9201_ $$0I:(DE-He78)E020-20160331$$kE020$$lE020 Med. Physik in der Radiologie$$x1
000298578 980__ $$ajournal
000298578 980__ $$aVDB
000298578 980__ $$aI:(DE-He78)E010-20160331
000298578 980__ $$aI:(DE-He78)E020-20160331
000298578 980__ $$aUNRESTRICTED