001     298935
005     20250425093418.0
024 7 _ |a 10.1093/stmcls/sxae084
|2 doi
024 7 _ |a pmid:39949042
|2 pmid
024 7 _ |a 1066-5099
|2 ISSN
024 7 _ |a 0737-1454
|2 ISSN
024 7 _ |a 1549-4918
|2 ISSN
037 _ _ |a DKFZ-2025-00369
041 _ _ |a English
082 _ _ |a 610
100 1 _ |a Pagliari, Francesca
|0 P:(DE-He78)d06e5bb2d0828caa2be79a51825e84e1
|b 0
|e First author
|u dkfz
245 _ _ |a Raman Spectroscopies for Cancer Research and Clinical Applications: a Focus on Cancer Stem Cells.
260 _ _ |a Oxford
|c 2025
|b Oxford University Press
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1745566417_21579
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a #EA:E041# / Volume 43, Issue 4, April 2025, sxae084
520 _ _ |a Over the last two decades, research has increasingly focused on Cancer Stem Cells (CSCs), considered responsible for tumor formation, resistance to therapies, and relapse. The traditional 'static' CSC model used to describe tumor heterogeneity has been challenged by the evidence of CSC dynamic nature and plasticity. A comprehensive understanding of the mechanisms underlying this plasticity, and the capacity to unambiguously identify cancer markers to precisely target CSCs are crucial aspects for advancing cancer research and introducing more effective treatment strategies. In this context, Raman spectroscopy (RS) and specific Raman schemes, including CARS, SRS, SERS, have emerged as innovative tools for molecular analyses both in vitro and in vivo. In fact, these techniques have demonstrated considerable potential in the field of cancer detection, as well as in intraoperative settings, thanks to their label-free nature and minimal invasiveness. However, the RS integration in pre-clinical and clinical applications, particularly in the CSC field, remains limited. This review provides a concise overview of the historical development of RS and its advantages. Then, after introducing the CSC features and the challenges in targeting them with traditional methods, we review and discuss the current literature about the application of RS for revealing and characterizing CSCs and their inherent plasticity, including a brief paragraph about the integration of artificial intelligence with RS. By providing the possibility to better characterize the cellular diversity in their microenvironment, RS could revolutionize current diagnostic and therapeutic approaches, enabling early identification of CSCs and facilitating the development of personalized treatment strategies.
536 _ _ |a 315 - Bildgebung und Radioonkologie (POF4-315)
|0 G:(DE-HGF)POF4-315
|c POF4-315
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de
650 _ 7 |a Cancer Stem Cells
|2 Other
650 _ 7 |a Cancer detection
|2 Other
650 _ 7 |a Cancer markers
|2 Other
650 _ 7 |a Label-free imaging
|2 Other
650 _ 7 |a Raman spectroscopy
|2 Other
700 1 _ |a Tirinato, Luca
|b 1
700 1 _ |a Di Fabrizio, Enzo
|0 0000-0001-9826-2129
|b 2
773 _ _ |a 10.1093/stmcls/sxae084
|g p. sxae084
|0 PERI:(DE-600)2030643-X
|n 4
|p sxae084
|t Stem cells
|v 43
|y 2025
|x 1066-5099
909 C O |p VDB
|o oai:inrepo02.dkfz.de:298935
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 0
|6 P:(DE-He78)d06e5bb2d0828caa2be79a51825e84e1
913 1 _ |a DE-HGF
|b Gesundheit
|l Krebsforschung
|1 G:(DE-HGF)POF4-310
|0 G:(DE-HGF)POF4-315
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Bildgebung und Radioonkologie
|x 0
914 1 _ |y 2025
915 _ _ |a DEAL Wiley
|0 StatID:(DE-HGF)3001
|2 StatID
|d 2024-12-18
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-12-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2024-12-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2024-12-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2024-12-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2024-12-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2024-12-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2024-12-18
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2024-12-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2024-12-18
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b STEM CELLS : 2022
|d 2024-12-18
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b STEM CELLS : 2022
|d 2024-12-18
920 1 _ |0 I:(DE-He78)E041-20160331
|k E041
|l Med. Physik in der Radioonkologie
|x 0
920 0 _ |0 I:(DE-He78)E041-20160331
|k E041
|l Med. Physik in der Radioonkologie
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)E041-20160331
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21