001     301290
005     20250518020613.0
024 7 _ |a 10.1111/nan.70018
|2 doi
024 7 _ |a pmid:40356449
|2 pmid
024 7 _ |a 0305-1846
|2 ISSN
024 7 _ |a 1365-2990
|2 ISSN
024 7 _ |a altmetric:177077170
|2 altmetric
037 _ _ |a DKFZ-2025-00974
041 _ _ |a English
082 _ _ |a 610
100 1 _ |a Ruiz, Fernanda
|b 0
245 _ _ |a Testing Meningiomas With Methylation Arrays: Insights and Recommendations From a Large Single-Centre Study.
260 _ _ |a Oxford [u.a.]
|c 2025
|b Wiley-Blackwell
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1747216074_6675
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Meningiomas are common primary CNS tumours, and their morphological diagnosis is usually straightforward. Their histological grading according to CNS WHO criteria alone provides limited information on recurrence risk. Risk stratification of meningiomas combining WHO grade, methylation class and copy number profile improves prediction of the risk of early recurrence. Because of the frequency of meningiomas in diagnostic practice, applying this prediction algorithm to all meningiomas is financially not viable in most healthcare systems.We analysed a retrospective dataset of over 1000 meningiomas from a single centre with methylation arrays to provide guidance on which meningiomas to prioritise for integrated molecular testing and to understand how WHO grades resolve into risk strata.Approximately 90% of CNS WHO Grade 1 meningiomas were allocated into the methylation class 'benign' and also into a low-risk group. Grade 2 meningiomas were allocated almost equally to either the low-risk (39%) or intermediate-risk groups (46%) but occasionally also to the high-risk group (15%). All grading criteria for CNS WHO Grade 2 meningiomas (brain invasion, mitotic count, cytoarchitectural atypia and histological type) showed a similar risk score distribution as the entire group. Grade 3 meningiomas were allocated to intermediate- (26%) or high-risk groups (74%).Our data suggest that Grade 2 and 3 meningiomas should be prioritised for methylation profiling. A small proportion of Grade 1 meningiomas may also benefit from integrated molecular analysis, and further research is needed to explore if those histologically benign meningiomas with a predicted increased recurrence risk are associated with distinct demographic or histological characteristics.
536 _ _ |a 312 - Funktionelle und strukturelle Genomforschung (POF4-312)
|0 G:(DE-HGF)POF4-312
|c POF4-312
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de
650 _ 7 |a CNS WHO grading
|2 Other
650 _ 7 |a meningioma
|2 Other
650 _ 7 |a methylation array
|2 Other
650 _ 7 |a model score
|2 Other
650 _ 7 |a prognostication
|2 Other
650 _ 2 |a Humans
|2 MeSH
650 _ 2 |a Meningioma: genetics
|2 MeSH
650 _ 2 |a Meningioma: pathology
|2 MeSH
650 _ 2 |a Meningioma: diagnosis
|2 MeSH
650 _ 2 |a Meningeal Neoplasms: genetics
|2 MeSH
650 _ 2 |a Meningeal Neoplasms: pathology
|2 MeSH
650 _ 2 |a Meningeal Neoplasms: diagnosis
|2 MeSH
650 _ 2 |a Female
|2 MeSH
650 _ 2 |a Male
|2 MeSH
650 _ 2 |a DNA Methylation
|2 MeSH
650 _ 2 |a Retrospective Studies
|2 MeSH
650 _ 2 |a Middle Aged
|2 MeSH
650 _ 2 |a Aged
|2 MeSH
650 _ 2 |a Adult
|2 MeSH
650 _ 2 |a Neoplasm Grading
|2 MeSH
650 _ 2 |a Aged, 80 and over
|2 MeSH
700 1 _ |a Rispoli, Rossella
|b 1
700 1 _ |a Jaunmuktane, Zane
|0 0000-0001-7738-8881
|b 2
700 1 _ |a Merve, Ashirwad
|b 3
700 1 _ |a D'Antona, Linda
|b 4
700 1 _ |a Dutt, Monika
|b 5
700 1 _ |a Sahm, Felix
|0 P:(DE-He78)a1f4b408b9155beb2a8f7cba4d04fe88
|b 6
|u dkfz
700 1 _ |a Brandner, Sebastian
|0 0000-0002-9821-0342
|b 7
773 _ _ |a 10.1111/nan.70018
|g Vol. 51, no. 3, p. e70018
|0 PERI:(DE-600)2008293-9
|n 3
|p e70018
|t Neuropathology & applied neurobiology
|v 51
|y 2025
|x 0305-1846
909 C O |o oai:inrepo02.dkfz.de:301290
|p VDB
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 6
|6 P:(DE-He78)a1f4b408b9155beb2a8f7cba4d04fe88
913 1 _ |a DE-HGF
|b Gesundheit
|l Krebsforschung
|1 G:(DE-HGF)POF4-310
|0 G:(DE-HGF)POF4-312
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Funktionelle und strukturelle Genomforschung
|x 0
914 1 _ |y 2025
915 _ _ |a DEAL Wiley
|0 StatID:(DE-HGF)3001
|2 StatID
|d 2025-01-07
|w ger
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b NEUROPATH APPL NEURO : 2022
|d 2025-01-07
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2025-01-07
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2025-01-07
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2025-01-07
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2025-01-07
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2025-01-07
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2025-01-07
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2025-01-07
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2025-01-07
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2025-01-07
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2025-01-07
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2025-01-07
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b NEUROPATH APPL NEURO : 2022
|d 2025-01-07
920 1 _ |0 I:(DE-He78)B300-20160331
|k B300
|l KKE Neuropathologie
|x 0
920 1 _ |0 I:(DE-He78)HD01-20160331
|k HD01
|l DKTK HD zentral
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)B300-20160331
980 _ _ |a I:(DE-He78)HD01-20160331
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21