001     301316
005     20250518020620.0
024 7 _ |a 10.1038/s41467-025-59059-9
|2 doi
024 7 _ |a pmid:40368907
|2 pmid
024 7 _ |a altmetric:177081626
|2 altmetric
037 _ _ |a DKFZ-2025-00988
041 _ _ |a English
082 _ _ |a 500
100 1 _ |a Perçin, Gülce
|0 0000-0002-3515-0434
|b 0
245 _ _ |a Embryonic macrophages orchestrate niche cell homeostasis for the establishment of the definitive hematopoietic stem cell pool.
260 _ _ |a [London]
|c 2025
|b Springer Nature
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1747317087_1548
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Embryonic macrophages emerge before the onset of definitive hematopoiesis, seed into discrete tissues and contribute to specialized resident macrophages throughout life. Presence of embryonic macrophages in the bone marrow and functional impact on hematopoietic stem cells (HSC) or the niche remains unclear. Here we show that bone marrow macrophages consist of two ontogenetically distinct cell populations from embryonic and adult origin. Newborn mice lacking embryonic macrophages have decreased HSC numbers in the bone marrow suggesting an important function for embryo-derived macrophages in orchestrating HSC trafficking around birth. The establishment of a normal cellular niche space in the bone marrow critically depends on embryonic macrophages that are important for the development of mesenchymal stromal cells, but not other non-hematopoietic niche cells, providing evidence for a specific role for embryo-derived macrophages in the establishment of the niche environment pivotal for the establishment of a normally sized HSC pool.
536 _ _ |a 312 - Funktionelle und strukturelle Genomforschung (POF4-312)
|0 G:(DE-HGF)POF4-312
|c POF4-312
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de
650 _ 2 |a Animals
|2 MeSH
650 _ 2 |a Hematopoietic Stem Cells: cytology
|2 MeSH
650 _ 2 |a Hematopoietic Stem Cells: physiology
|2 MeSH
650 _ 2 |a Macrophages: cytology
|2 MeSH
650 _ 2 |a Macrophages: metabolism
|2 MeSH
650 _ 2 |a Macrophages: physiology
|2 MeSH
650 _ 2 |a Stem Cell Niche: physiology
|2 MeSH
650 _ 2 |a Mice
|2 MeSH
650 _ 2 |a Homeostasis
|2 MeSH
650 _ 2 |a Hematopoiesis
|2 MeSH
650 _ 2 |a Mice, Inbred C57BL
|2 MeSH
650 _ 2 |a Embryo, Mammalian: cytology
|2 MeSH
650 _ 2 |a Mesenchymal Stem Cells: cytology
|2 MeSH
650 _ 2 |a Animals, Newborn
|2 MeSH
650 _ 2 |a Female
|2 MeSH
650 _ 2 |a Bone Marrow Cells: cytology
|2 MeSH
700 1 _ |a Riege, Konstantin
|0 0009-0002-9881-7563
|b 1
700 1 _ |a Fröbel, Julia
|0 0000-0002-4958-6343
|b 2
700 1 _ |a Metz, Jonas
|0 P:(DE-He78)e3d545b495baa948d017675e0a03ea02
|b 3
|u dkfz
700 1 _ |a Culemann, Stephan
|0 0000-0001-9837-2811
|b 4
700 1 _ |a Lesche, Mathias
|0 0000-0002-3274-7163
|b 5
700 1 _ |a Reinhardt, Susanne
|0 0000-0001-9202-105X
|b 6
700 1 _ |a Höfer, Thomas
|0 P:(DE-He78)9dbe272aaadbdc810ab0bb291eae428e
|b 7
|u dkfz
700 1 _ |a Hoffmann, Steve
|0 0000-0002-5239-7201
|b 8
700 1 _ |a Waskow, Claudia
|0 0000-0003-3261-0922
|b 9
773 _ _ |a 10.1038/s41467-025-59059-9
|g Vol. 16, no. 1, p. 4428
|0 PERI:(DE-600)2553671-0
|n 1
|p 4428
|t Nature Communications
|v 16
|y 2025
|x 2041-1723
909 C O |o oai:inrepo02.dkfz.de:301316
|p VDB
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 3
|6 P:(DE-He78)e3d545b495baa948d017675e0a03ea02
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 7
|6 P:(DE-He78)9dbe272aaadbdc810ab0bb291eae428e
913 1 _ |a DE-HGF
|b Gesundheit
|l Krebsforschung
|1 G:(DE-HGF)POF4-310
|0 G:(DE-HGF)POF4-312
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Funktionelle und strukturelle Genomforschung
|x 0
914 1 _ |y 2025
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b NAT COMMUN : 2022
|d 2025-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2025-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2025-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2024-01-30T07:48:07Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2024-01-30T07:48:07Z
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Peer review
|d 2024-01-30T07:48:07Z
915 _ _ |a Creative Commons Attribution CC BY (No Version)
|0 LIC:(DE-HGF)CCBYNV
|2 V:(DE-HGF)
|b DOAJ
|d 2024-01-30T07:48:07Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2025-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1040
|2 StatID
|b Zoological Record
|d 2025-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1060
|2 StatID
|b Current Contents - Agriculture, Biology and Environmental Sciences
|d 2025-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2025-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2025-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2025-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2025-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2025-01-02
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2025-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2025-01-02
915 _ _ |a IF >= 15
|0 StatID:(DE-HGF)9915
|2 StatID
|b NAT COMMUN : 2022
|d 2025-01-02
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2025-01-02
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2025-01-02
920 1 _ |0 I:(DE-He78)B086-20160331
|k B086
|l B086 Modellierung Biol. Systeme
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)B086-20160331
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21