000301567 001__ 301567
000301567 005__ 20250829091435.0
000301567 0247_ $$2doi$$a10.1002/mrm.30557
000301567 0247_ $$2pmid$$apmid:40411372
000301567 0247_ $$2ISSN$$a1522-2594
000301567 0247_ $$2ISSN$$a0740-3194
000301567 0247_ $$2altmetric$$aaltmetric:177441597
000301567 037__ $$aDKFZ-2025-01075
000301567 041__ $$aEnglish
000301567 082__ $$a610
000301567 1001_ $$0P:(DE-He78)d913cff5d92e46c7893927e308e71587$$aBulanov, Petr$$b0$$eFirst author$$udkfz
000301567 245__ $$aHuman liver CEST imaging at 7 T: Impact of B 1 + shimming.
000301567 260__ $$aNew York, NY [u.a.]$$bWiley-Liss$$c2025
000301567 3367_ $$2DRIVER$$aarticle
000301567 3367_ $$2DataCite$$aOutput Types/Journal article
000301567 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1756451601_12783
000301567 3367_ $$2BibTeX$$aARTICLE
000301567 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000301567 3367_ $$00$$2EndNote$$aJournal Article
000301567 500__ $$a#EA:E020#LA:E020# / Volume 94, Issue 4 pp. 1604-1615
000301567 520__ $$aTo explore the feasibility of CEST imaging in the human liver at 7 T with B 1 + $$ {B}_1^{+} $$ shimming.CEST MRI was performed on a 7 T whole-body scanner with a parallel transmission (pTx) system in five healthy volunteers. Static pTx ( B 1 + $$ {B}_1^{+} $$ shimming) was applied to locally maximize the B 1 + $$ {B}_1^{+} $$ magnitude per input power within a given region of interest (ROI) of approximately 30 mm diameter (ROIshim). Relaxation-compensated inverse magnetization transfer ratio (MTRRex) values were quantified for amide protons, guanidino protons, and relayed nuclear Overhauser effect signals based on five-pool Lorentzian fit analysis. MTRRex values were corrected for B1 inhomogeneities using an absolute, accurate MR fingerprinting-based B 1 + $$ {B}_1^{+} $$ mapping technique.Within the ROIshim, reliable MTRRex values could be calculated for an average of 85% of voxels. The mean MTRRex values and corresponding coefficient of variations across the group are: 0.113 ± 0.009, 8.8% for amide; 0.167 ± 0.010, 6.3% for nuclear Overhauser effect; and 0.079 ± 0.010, 12.9% for guanidino. MTRRex values exhibit low variation between subjects, as reflected by low coefficient of variations.In this study, we have demonstrated for the first time the feasibility of acquiring and quantifying relaxation-compensated CEST contrasts in the human liver at ultrahigh field. The application of static pTx effectively eliminates B 1 + $$ {B}_1^{+} $$ dropouts and allows for accurate CEST contrast quantification within the selected ROI. In addition, the proposed B 1 + $$ {B}_1^{+} $$ mapping technique shows efficacy for enhanced MTRRex B1 corrections in the abdomen.
000301567 536__ $$0G:(DE-HGF)POF4-315$$a315 - Bildgebung und Radioonkologie (POF4-315)$$cPOF4-315$$fPOF IV$$x0
000301567 588__ $$aDataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de
000301567 650_7 $$2Other$$a7 T
000301567 650_7 $$2Other$$aB1 correction
000301567 650_7 $$2Other$$aB1+                                                                                                                             B                                                        1                                                           +                                                                                                 $$ {B}_1^{+} $$                                    shimming
000301567 650_7 $$2Other$$abody CEST
000301567 650_7 $$2Other$$aliver CEST
000301567 650_7 $$2Other$$apTx
000301567 7001_ $$0P:(DE-He78)877c77517aa07d7b3affbb072649e965$$aMenshchikov, Petr$$b1$$udkfz
000301567 7001_ $$0P:(DE-He78)d40714cfcbbc151fe464dd2bd55952b8$$aGrimm, Johannes$$b2$$udkfz
000301567 7001_ $$00009-0001-1956-3757$$aLutz, Max$$b3
000301567 7001_ $$0P:(DE-He78)7985b432d853ab8929db0f1cb121667f$$aOrzada, Stephan$$b4$$udkfz
000301567 7001_ $$0P:(DE-He78)3c51ec0b06b6c9ccece5c7b5306de106$$aBoyd, Philip$$b5$$udkfz
000301567 7001_ $$0P:(DE-He78)29b2f01310f7022916255ddba2750f9b$$aBachert, Peter$$b6$$udkfz
000301567 7001_ $$0P:(DE-He78)022611a2317e4de40fd912e0a72293a8$$aLadd, Mark$$b7$$udkfz
000301567 7001_ $$0P:(DE-He78)577a5c61f44b8023e229610afbc7cd4e$$aKorzowski, Andreas$$b8$$udkfz
000301567 7001_ $$0P:(DE-He78)19e2d877276b0e5eec11cdfc1789a55e$$aSchmitter, Sebastian$$b9$$eLast author$$udkfz
000301567 773__ $$0PERI:(DE-600)1493786-4$$a10.1002/mrm.30557$$gp. mrm.30557$$n4$$p1604-1615$$tMagnetic resonance in medicine$$v94$$x1522-2594$$y2025
000301567 909CO $$ooai:inrepo02.dkfz.de:301567$$pVDB
000301567 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)d913cff5d92e46c7893927e308e71587$$aDeutsches Krebsforschungszentrum$$b0$$kDKFZ
000301567 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)877c77517aa07d7b3affbb072649e965$$aDeutsches Krebsforschungszentrum$$b1$$kDKFZ
000301567 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)d40714cfcbbc151fe464dd2bd55952b8$$aDeutsches Krebsforschungszentrum$$b2$$kDKFZ
000301567 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)7985b432d853ab8929db0f1cb121667f$$aDeutsches Krebsforschungszentrum$$b4$$kDKFZ
000301567 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)3c51ec0b06b6c9ccece5c7b5306de106$$aDeutsches Krebsforschungszentrum$$b5$$kDKFZ
000301567 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)29b2f01310f7022916255ddba2750f9b$$aDeutsches Krebsforschungszentrum$$b6$$kDKFZ
000301567 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)022611a2317e4de40fd912e0a72293a8$$aDeutsches Krebsforschungszentrum$$b7$$kDKFZ
000301567 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)577a5c61f44b8023e229610afbc7cd4e$$aDeutsches Krebsforschungszentrum$$b8$$kDKFZ
000301567 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)19e2d877276b0e5eec11cdfc1789a55e$$aDeutsches Krebsforschungszentrum$$b9$$kDKFZ
000301567 9131_ $$0G:(DE-HGF)POF4-315$$1G:(DE-HGF)POF4-310$$2G:(DE-HGF)POF4-300$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lKrebsforschung$$vBildgebung und Radioonkologie$$x0
000301567 9141_ $$y2025
000301567 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2025-01-02$$wger
000301567 915__ $$0StatID:(DE-HGF)3001$$2StatID$$aDEAL Wiley$$d2025-01-02$$wger
000301567 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2025-01-02
000301567 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2025-01-02
000301567 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2025-01-02
000301567 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2025-01-02
000301567 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2025-01-02
000301567 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2025-01-02
000301567 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2025-01-02
000301567 915__ $$0StatID:(DE-HGF)1110$$2StatID$$aDBCoverage$$bCurrent Contents - Clinical Medicine$$d2025-01-02
000301567 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2025-01-02
000301567 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2025-01-02
000301567 9202_ $$0I:(DE-He78)E020-20160331$$kE020$$lE020 Med. Physik in der Radiologie$$x0
000301567 9201_ $$0I:(DE-He78)E020-20160331$$kE020$$lE020 Med. Physik in der Radiologie$$x0
000301567 9200_ $$0I:(DE-He78)E020-20160331$$kE020$$lE020 Med. Physik in der Radiologie$$x0
000301567 980__ $$ajournal
000301567 980__ $$aVDB
000301567 980__ $$aI:(DE-He78)E020-20160331
000301567 980__ $$aUNRESTRICTED