000302839 001__ 302839
000302839 005__ 20250717114059.0
000302839 0247_ $$2doi$$a10.3390/diagnostics15131719
000302839 0247_ $$2pmid$$apmid:40647718
000302839 0247_ $$2pmc$$apmc:PMC12249058
000302839 037__ $$aDKFZ-2025-01379
000302839 041__ $$aEnglish
000302839 082__ $$a610
000302839 1001_ $$00000-0003-2476-178X$$aUrsprung, Stephan$$b0
000302839 245__ $$aVariability of Metabolic Rate and Distribution Volume Quantification in Whole-Body Parametric PATLAK [18F]-FDG PET/CT-A Prospective Trial in Patients with Lung Cancer.
000302839 260__ $$aBasel$$bMDPI$$c2025
000302839 3367_ $$2DRIVER$$aarticle
000302839 3367_ $$2DataCite$$aOutput Types/Journal article
000302839 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1752664726_10334
000302839 3367_ $$2BibTeX$$aARTICLE
000302839 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000302839 3367_ $$00$$2EndNote$$aJournal Article
000302839 520__ $$aBackground: The recent introduction of whole-body positron emission tomography/ computed tomography (PET/CT) scanners and multi-bed, multi-time point acquisition technique enable calculating fluorodeoxyglucose (FDG) kinetics in the whole body. However, validating parametric, Patlak-derived data is difficult on phantoms. Methods: This prospective study investigated the effect of quantification methods mean, max, and peak on the metabolic rate (MR-FDG) and distribution volume (DV-FDG) quantification, as well as the diagnostic accuracy of parametric Patlak FDG-PET scans in diagnosing lung lesions and lymph node metastases, using histopathology and follow-up as reference standards. Dynamic whole-body FDG PET was acquired for 80 minutes in 34 patients with indeterminate lung lesions and kinetic parameters extracted from lung lesions and representative mediastinal and hilar lymph nodes. Results: All quantification methods-mean, max, and peak-demonstrated high diagnostic accuracy (AUC: MR-FDG: 0.987-0.991 and 0.893-0.905; DV-FDG: 0.948-0.975 and 0.812-0.825) for differentiating benign from malignant lymph nodes and lung lesions. Differences in the magnitude of MR-FDG (-4.76-14.09) and DV-FDG (-10.64-46.10%) were substantial across methods. Variability was more pronounced in lymph nodes (MR-FDG: 1.37-3.48) than in lung lesions (MR-FDG: 3.31-5.04). The variability was lowest between mean and max quantification, with percentage differences of 40.87 ± 5.69% for MR-FDG and 39.26 ± 7.68% for DV-FDG. Conclusions: The choice of method to measure MR-FDG and DV-FDG greatly influences the results, especially in smaller lesions with large and systematic differences. For lung lesions, a conversion factor between mean and max methods of 40% provides acceptable agreement, facilitating retrospective comparisons of measurements, e.g., in meta-analyses.
000302839 536__ $$0G:(DE-HGF)POF4-899$$a899 - ohne Topic (POF4-899)$$cPOF4-899$$fPOF IV$$x0
000302839 588__ $$aDataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de
000302839 650_7 $$2Other$$aFDG
000302839 650_7 $$2Other$$aPET/CT
000302839 650_7 $$2Other$$aPatlak
000302839 650_7 $$2Other$$adynamic PET
000302839 650_7 $$2Other$$aparametric FDG
000302839 650_7 $$2Other$$awhole-body
000302839 7001_ $$aZender, Lars$$b1
000302839 7001_ $$aGhibes, Patrick$$b2
000302839 7001_ $$00000-0002-1215-9428$$aHagen, Florian$$b3
000302839 7001_ $$00000-0003-2668-7325$$aNikolaou, Konstantin$$b4
000302839 7001_ $$00000-0001-7519-0417$$ala Fougère, Christian$$b5
000302839 7001_ $$00000-0003-2044-3047$$aWeissinger, Matthias$$b6
000302839 773__ $$0PERI:(DE-600)2662336-5$$a10.3390/diagnostics15131719$$gVol. 15, no. 13, p. 1719 -$$n13$$p1719$$tDiagnostics$$v15$$x2075-4418$$y2025
000302839 909CO $$ooai:inrepo02.dkfz.de:302839$$pVDB
000302839 9101_ $$0I:(DE-588b)2036810-0$$60000-0003-2668-7325$$aDeutsches Krebsforschungszentrum$$b4$$kDKFZ
000302839 9101_ $$0I:(DE-588b)2036810-0$$60000-0001-7519-0417$$aDeutsches Krebsforschungszentrum$$b5$$kDKFZ
000302839 9131_ $$0G:(DE-HGF)POF4-899$$1G:(DE-HGF)POF4-890$$2G:(DE-HGF)POF4-800$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bProgrammungebundene Forschung$$lohne Programm$$vohne Topic$$x0
000302839 9141_ $$y2025
000302839 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bDIAGNOSTICS : 2022$$d2025-01-07
000302839 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2025-01-07
000302839 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2025-01-07
000302839 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2024-08-29T10:48:13Z
000302839 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2024-08-29T10:48:13Z
000302839 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Anonymous peer review$$d2024-08-29T10:48:13Z
000302839 915__ $$0LIC:(DE-HGF)CCBYNV$$2V:(DE-HGF)$$aCreative Commons Attribution CC BY (No Version)$$bDOAJ$$d2024-08-29T10:48:13Z
000302839 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2025-01-07
000302839 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2025-01-07
000302839 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2025-01-07
000302839 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2025-01-07
000302839 915__ $$0StatID:(DE-HGF)1110$$2StatID$$aDBCoverage$$bCurrent Contents - Clinical Medicine$$d2025-01-07
000302839 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2025-01-07
000302839 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2025-01-07
000302839 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2025-01-07
000302839 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2025-01-07
000302839 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2025-01-07
000302839 9201_ $$0I:(DE-He78)TU01-20160331$$kTU01$$lDKTK Koordinierungsstelle Tübingen$$x0
000302839 980__ $$ajournal
000302839 980__ $$aVDB
000302839 980__ $$aI:(DE-He78)TU01-20160331
000302839 980__ $$aUNRESTRICTED