Journal Article DKFZ-2025-01379

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Variability of Metabolic Rate and Distribution Volume Quantification in Whole-Body Parametric PATLAK [18F]-FDG PET/CT-A Prospective Trial in Patients with Lung Cancer.

 ;  ;  ;  ;  ;  ;

2025
MDPI Basel

Diagnostics 15(13), 1719 () [10.3390/diagnostics15131719]
 GO

This record in other databases:

Please use a persistent id in citations: doi:

Abstract: Background: The recent introduction of whole-body positron emission tomography/ computed tomography (PET/CT) scanners and multi-bed, multi-time point acquisition technique enable calculating fluorodeoxyglucose (FDG) kinetics in the whole body. However, validating parametric, Patlak-derived data is difficult on phantoms. Methods: This prospective study investigated the effect of quantification methods mean, max, and peak on the metabolic rate (MR-FDG) and distribution volume (DV-FDG) quantification, as well as the diagnostic accuracy of parametric Patlak FDG-PET scans in diagnosing lung lesions and lymph node metastases, using histopathology and follow-up as reference standards. Dynamic whole-body FDG PET was acquired for 80 minutes in 34 patients with indeterminate lung lesions and kinetic parameters extracted from lung lesions and representative mediastinal and hilar lymph nodes. Results: All quantification methods-mean, max, and peak-demonstrated high diagnostic accuracy (AUC: MR-FDG: 0.987-0.991 and 0.893-0.905; DV-FDG: 0.948-0.975 and 0.812-0.825) for differentiating benign from malignant lymph nodes and lung lesions. Differences in the magnitude of MR-FDG (-4.76-14.09) and DV-FDG (-10.64-46.10%) were substantial across methods. Variability was more pronounced in lymph nodes (MR-FDG: 1.37-3.48) than in lung lesions (MR-FDG: 3.31-5.04). The variability was lowest between mean and max quantification, with percentage differences of 40.87 ± 5.69% for MR-FDG and 39.26 ± 7.68% for DV-FDG. Conclusions: The choice of method to measure MR-FDG and DV-FDG greatly influences the results, especially in smaller lesions with large and systematic differences. For lung lesions, a conversion factor between mean and max methods of 40% provides acceptable agreement, facilitating retrospective comparisons of measurements, e.g., in meta-analyses.

Keyword(s): FDG ; PET/CT ; Patlak ; dynamic PET ; parametric FDG ; whole-body

Classification:

Contributing Institute(s):
  1. DKTK Koordinierungsstelle Tübingen (TU01)
Research Program(s):
  1. 899 - ohne Topic (POF4-899) (POF4-899)

Appears in the scientific report 2025
Database coverage:
Medline ; Creative Commons Attribution CC BY (No Version) ; DOAJ ; Article Processing Charges ; Clarivate Analytics Master Journal List ; Current Contents - Clinical Medicine ; DOAJ Seal ; Ebsco Academic Search ; Essential Science Indicators ; Fees ; IF < 5 ; JCR ; SCOPUS ; Science Citation Index Expanded ; Web of Science Core Collection
Click to display QR Code for this record

The record appears in these collections:
Document types > Articles > Journal Article
Public records
Publications database

 Record created 2025-07-16, last modified 2025-07-17


Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)