001     303087
005     20250808154537.0
024 7 _ |a 10.1021/jacs.5c06761
|2 doi
024 7 _ |a pmid:40696775
|2 pmid
024 7 _ |a 0002-7863
|2 ISSN
024 7 _ |a 1520-5126
|2 ISSN
024 7 _ |a 1943-2984
|2 ISSN
024 7 _ |a altmetric:179625443
|2 altmetric
037 _ _ |a DKFZ-2025-01512
041 _ _ |a English
082 _ _ |a 540
100 1 _ |a Peng, Wenwu
|b 0
245 _ _ |a Autonomous Activation of a Gated Chemiluminescent Photosensitizer Enables Targeted Photodynamic Therapy in Tumor Cells.
260 _ _ |a Washington, DC
|c 2025
|b ACS Publications
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1754660687_12085
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a 2025 Aug 6;147(31):27822-27834
520 _ _ |a Chemiluminescence-based photodynamic therapy (CLPDT) offers a promising solution to the light penetration limits of traditional PDT. However, it lacks spatiotemporal control. Intracellularly activated, self-luminescent PDT agents via a molecular logic gate switch may address this key limitation. We report the synthesis of the self-activating, chemiluminescent photosensitizer (PS) that enables tumor microenvironment-controlled PDT applications. This system integrates a dioxetane-based (Diox) chemiluminescent scaffold with a ruthenium-based (Ru) PS through an oxidation and pH-sensitive linker to enable an AND-gated activation mechanism. The Diox@Ru conjugate is selectively activated by elevated intracellular reactive oxygen species (ROS), characteristic of aggressive cancer phenotypes arising from altered cell metabolism. Upon exposure to ROS (in this case, hydrogen peroxide), the boronic acid ester protecting group of the dioxetane is cleaved, initiating localized chemiluminescence that directly excites the Ru(II) PS to generate cytotoxic singlet oxygen (1O2). Importantly, Diox@Ru remains inert under physiological conditions (neutral pH, low ROS) as well as in the acidic, ROS-rich extracellular tumor milieu (slightly acidic, high ROS). Its activation is confined to the intracellular space of glycolytic cancer cells with mildly alkaline, ROS-rich cytoplasm; and proceeds autonomously, without the need for external light irradiation. In both two-dimensional (2D) monolayer cultures and three-dimensional (3D) tumor spheroid models, Diox@Ru exhibits robust luminescence and efficient 1O2 production, resulting in potent cytotoxic effects. These findings present a versatile platform for autonomous activation of self-luminescent PDT agents and highlight the promise of logic-gated chemiluminescence for spatially controlled therapy in complex biological settings.
536 _ _ |a 899 - ohne Topic (POF4-899)
|0 G:(DE-HGF)POF4-899
|c POF4-899
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de
700 1 _ |a Zhou, Tianjiao
|b 1
700 1 _ |a Hu, Lifan
|b 2
700 1 _ |a Vankann, Vivien
|b 3
700 1 _ |a Bohn, Toszka
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Bopp, Tobias
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Kuan, Seah Ling
|0 0000-0003-3945-4491
|b 6
700 1 _ |a Weil, Tanja
|0 0000-0002-5906-7205
|b 7
773 _ _ |a 10.1021/jacs.5c06761
|g p. jacs.5c06761
|0 PERI:(DE-600)1472210-0
|n 31
|p 27822-27834
|t Journal of the American Chemical Society
|v 147
|y 2025
|x 0002-7863
909 C O |p VDB
|o oai:inrepo02.dkfz.de:303087
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 4
|6 P:(DE-HGF)0
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 5
|6 P:(DE-HGF)0
913 1 _ |a DE-HGF
|b Programmungebundene Forschung
|l ohne Programm
|1 G:(DE-HGF)POF4-890
|0 G:(DE-HGF)POF4-899
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-800
|4 G:(DE-HGF)POF
|v ohne Topic
|x 0
914 1 _ |y 2025
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2024-12-13
|w ger
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b J AM CHEM SOC : 2022
|d 2024-12-13
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-12-13
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2024-12-13
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2024-12-13
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2024-12-13
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2024-12-13
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2024-12-13
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2024-12-13
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2024-12-13
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2024-12-13
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1200
|2 StatID
|b Chemical Reactions
|d 2024-12-13
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2024-12-13
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1210
|2 StatID
|b Index Chemicus
|d 2024-12-13
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2024-12-13
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2024-12-13
915 _ _ |a IF >= 15
|0 StatID:(DE-HGF)9915
|2 StatID
|b J AM CHEM SOC : 2022
|d 2024-12-13
920 1 _ |0 I:(DE-He78)FM01-20160331
|k FM01
|l DKTK Koordinierungsstelle Frankfurt
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)FM01-20160331
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21