Journal Article DKFZ-2025-01512

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Autonomous Activation of a Gated Chemiluminescent Photosensitizer Enables Targeted Photodynamic Therapy in Tumor Cells.

 ;  ;  ;  ;  ;  ;  ;

2025
ACS Publications Washington, DC

Journal of the American Chemical Society 147(31), 27822-27834 () [10.1021/jacs.5c06761]
 GO

This record in other databases:  

Please use a persistent id in citations: doi:

Abstract: Chemiluminescence-based photodynamic therapy (CLPDT) offers a promising solution to the light penetration limits of traditional PDT. However, it lacks spatiotemporal control. Intracellularly activated, self-luminescent PDT agents via a molecular logic gate switch may address this key limitation. We report the synthesis of the self-activating, chemiluminescent photosensitizer (PS) that enables tumor microenvironment-controlled PDT applications. This system integrates a dioxetane-based (Diox) chemiluminescent scaffold with a ruthenium-based (Ru) PS through an oxidation and pH-sensitive linker to enable an AND-gated activation mechanism. The Diox@Ru conjugate is selectively activated by elevated intracellular reactive oxygen species (ROS), characteristic of aggressive cancer phenotypes arising from altered cell metabolism. Upon exposure to ROS (in this case, hydrogen peroxide), the boronic acid ester protecting group of the dioxetane is cleaved, initiating localized chemiluminescence that directly excites the Ru(II) PS to generate cytotoxic singlet oxygen (1O2). Importantly, Diox@Ru remains inert under physiological conditions (neutral pH, low ROS) as well as in the acidic, ROS-rich extracellular tumor milieu (slightly acidic, high ROS). Its activation is confined to the intracellular space of glycolytic cancer cells with mildly alkaline, ROS-rich cytoplasm; and proceeds autonomously, without the need for external light irradiation. In both two-dimensional (2D) monolayer cultures and three-dimensional (3D) tumor spheroid models, Diox@Ru exhibits robust luminescence and efficient 1O2 production, resulting in potent cytotoxic effects. These findings present a versatile platform for autonomous activation of self-luminescent PDT agents and highlight the promise of logic-gated chemiluminescence for spatially controlled therapy in complex biological settings.

Classification:

Note: 2025 Aug 6;147(31):27822-27834

Contributing Institute(s):
  1. DKTK Koordinierungsstelle Frankfurt (FM01)
Research Program(s):
  1. 899 - ohne Topic (POF4-899) (POF4-899)

Appears in the scientific report 2025
Database coverage:
Medline ; BIOSIS Previews ; Biological Abstracts ; Chemical Reactions ; Clarivate Analytics Master Journal List ; Current Contents - Life Sciences ; Current Contents - Physical, Chemical and Earth Sciences ; Ebsco Academic Search ; Essential Science Indicators ; IF >= 15 ; Index Chemicus ; JCR ; NationallizenzNationallizenz ; SCOPUS ; Science Citation Index Expanded ; Web of Science Core Collection
Click to display QR Code for this record

The record appears in these collections:
Document types > Articles > Journal Article
Public records
Publications database

 Record created 2025-07-24, last modified 2025-08-08



Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)