000304463 001__ 304463
000304463 005__ 20250909114904.0
000304463 0247_ $$2doi$$a10.1007/s00259-025-07504-8
000304463 0247_ $$2pmid$$apmid:40913640
000304463 0247_ $$2ISSN$$a1619-7070
000304463 0247_ $$2ISSN$$a1619-7089
000304463 037__ $$aDKFZ-2025-01856
000304463 041__ $$aEnglish
000304463 082__ $$a610
000304463 1001_ $$0P:(DE-He78)69d2d5247c019c2a2075502dc11bf0b2$$aSachpekidis, Christos$$b0$$eFirst author$$udkfz
000304463 245__ $$aArtificial intelligence-assisted assessment of metabolic response to tebentafusp in metastatic uveal melanoma: a long axial field-of-view [18F]FDG PET/CT study.
000304463 260__ $$aHeidelberg [u.a.]$$bSpringer-Verl.$$c2025
000304463 3367_ $$2DRIVER$$aarticle
000304463 3367_ $$2DataCite$$aOutput Types/Journal article
000304463 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1757409426_22366
000304463 3367_ $$2BibTeX$$aARTICLE
000304463 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000304463 3367_ $$00$$2EndNote$$aJournal Article
000304463 500__ $$a#EA:E060#LA:E060# / epub
000304463 520__ $$aTebentafusp has emerged as the first systemic therapy to significantly prolong survival in treatment-naïve HLA-A*02:01 + patients with unresectable or metastatic uveal melanoma (mUM). Notably, a survival benefit has been observed even in the absence of radiographic response. This study aims to investigate the feasibility and prognostic value of artificial intelligence (AI)-assisted quantification and metabolic response assessment of [18F]FDG long axial field-of-view (LAFOV) PET/CT in mUM patients undergoing tebentafusp therapy.Fifteen patients with mUM treated with tebentafusp underwent [18F]FDG LAFOV PET/CT at baseline and 3 months post-treatment. Total metabolic tumor volume (TMTV) and total lesion glycolysis (TLG) were quantified using a deep learning-based segmentation tool On the RECOMIA platform. Metabolic response was assessed according to AI-assisted PERCIST 1.0 criteria. Associations between PET-derived parameters and overall survival (OS) were evaluated using Kaplan-Meier survival analysis.The median follow up (95% CI) was 14.1 months (12.9 months - not available). Automated TMTV and TLG measurements were successfully obtained in all patients. Elevated baseline TMTV and TLG were significantly associated with shorter OS (TMTV: 16.9 vs. 27.2 months; TLG: 16.9 vs. 27.2 months; p < 0.05). Similarly, higher TMTV and TLG at 3 months post-treatment predicted poorer survival outcomes (TMTV: 14.3 vs. 24.5 months; TLG: 14.3 vs. 24.5 months; p < 0.05). AI-assisted PERCIST response evaluation identified six patients with disease control (complete metabolic response, partial metabolic response, stable metabolic disease) and nine with progressive metabolic disease. A trend toward improved OS was observed in patients with disease control (24.5 vs. 14.6 months, p = 0.08). Circulating tumor DNA (ctDNA) levels based on GNAQ and GNA11 mutations were available in 8 patients; after 3 months Of tebentafusp treatment, 5 showed reduced Or stable ctDNA levels, and 3 showed an increase (median OS: 24.5 vs. 3.3 months; p = 0.13). Patients with increasing ctDNA levels exhibited significantly higher TMTV and TLG on follow-up imaging.AI-assisted whole-body quantification of [1⁸F]FDG PET/CT and PERCIST-based response assessment are feasible and hold prognostic significance in tebentafusp-treated mUM. TMTV and TLG may serve as non-invasive imaging biomarkers for risk stratification and treatment monitoring in this malignancy.
000304463 536__ $$0G:(DE-HGF)POF4-315$$a315 - Bildgebung und Radioonkologie (POF4-315)$$cPOF4-315$$fPOF IV$$x0
000304463 588__ $$aDataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de
000304463 650_7 $$2Other$$aArtificial intelligence
000304463 650_7 $$2Other$$aCtDNA
000304463 650_7 $$2Other$$aDeep learning
000304463 650_7 $$2Other$$aMetastatic uveal melanoma
000304463 650_7 $$2Other$$aPERCIST
000304463 650_7 $$2Other$$aTebentafusp
000304463 650_7 $$2Other$$aTotal lesion glycolysis (TLG)
000304463 650_7 $$2Other$$aTotal metabolic tumor volume (TMTV)
000304463 650_7 $$2Other$$aTreatment response evaluation
000304463 650_7 $$2Other$$a[18F]FDG LAFOV PET/CT
000304463 7001_ $$aMachiraju, Devayani$$b1
000304463 7001_ $$aStrauss, Dimitrios Stefanos$$b2
000304463 7001_ $$0P:(DE-He78)96ac0342a3ccf9553e3d4c9da9b821b0$$aPan, Leyun$$b3$$udkfz
000304463 7001_ $$0P:(DE-He78)bb6a7a70f976eb8df1769944bf913596$$aKopp-Schneider, Annette$$b4$$udkfz
000304463 7001_ $$aEdenbrandt, Lars$$b5
000304463 7001_ $$0P:(DE-He78)b2df3652dfa3e19d5e96dfc53f44a992$$aDimitrakopoulou-Strauss, Antonia$$b6$$eLast author$$udkfz
000304463 7001_ $$aHassel, Jessica C$$b7
000304463 773__ $$0PERI:(DE-600)2098375-X$$a10.1007/s00259-025-07504-8$$pnn$$tEuropean journal of nuclear medicine and molecular imaging$$vnn$$x1619-7070$$y2025
000304463 909CO $$ooai:inrepo02.dkfz.de:304463$$pVDB
000304463 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)69d2d5247c019c2a2075502dc11bf0b2$$aDeutsches Krebsforschungszentrum$$b0$$kDKFZ
000304463 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)96ac0342a3ccf9553e3d4c9da9b821b0$$aDeutsches Krebsforschungszentrum$$b3$$kDKFZ
000304463 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)bb6a7a70f976eb8df1769944bf913596$$aDeutsches Krebsforschungszentrum$$b4$$kDKFZ
000304463 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)b2df3652dfa3e19d5e96dfc53f44a992$$aDeutsches Krebsforschungszentrum$$b6$$kDKFZ
000304463 9131_ $$0G:(DE-HGF)POF4-315$$1G:(DE-HGF)POF4-310$$2G:(DE-HGF)POF4-300$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lKrebsforschung$$vBildgebung und Radioonkologie$$x0
000304463 9141_ $$y2025
000304463 915__ $$0StatID:(DE-HGF)3002$$2StatID$$aDEAL Springer$$d2024-12-05$$wger
000304463 915__ $$0StatID:(DE-HGF)3002$$2StatID$$aDEAL Springer$$d2024-12-05$$wger
000304463 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bEUR J NUCL MED MOL I : 2022$$d2024-12-05
000304463 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-05
000304463 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-05
000304463 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2024-12-05
000304463 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2024-12-05
000304463 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-05
000304463 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2024-12-05
000304463 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2024-12-05
000304463 915__ $$0StatID:(DE-HGF)1110$$2StatID$$aDBCoverage$$bCurrent Contents - Clinical Medicine$$d2024-12-05
000304463 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2024-12-05
000304463 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-05
000304463 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bEUR J NUCL MED MOL I : 2022$$d2024-12-05
000304463 9202_ $$0I:(DE-He78)E060-20160331$$kE060$$lE060 KKE Nuklearmedizin$$x0
000304463 9201_ $$0I:(DE-He78)E060-20160331$$kE060$$lE060 KKE Nuklearmedizin$$x0
000304463 9201_ $$0I:(DE-He78)C060-20160331$$kC060$$lC060 Biostatistik$$x1
000304463 9200_ $$0I:(DE-He78)E060-20160331$$kE060$$lE060 KKE Nuklearmedizin$$x0
000304463 980__ $$ajournal
000304463 980__ $$aVDB
000304463 980__ $$aI:(DE-He78)E060-20160331
000304463 980__ $$aI:(DE-He78)C060-20160331
000304463 980__ $$aUNRESTRICTED