Journal Article DKFZ-2025-01856

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Artificial intelligence-assisted assessment of metabolic response to tebentafusp in metastatic uveal melanoma: a long axial field-of-view [18F]FDG PET/CT study.

 ;  ;  ;  ;  ;  ;  ;

2025
Springer-Verl. Heidelberg [u.a.]

European journal of nuclear medicine and molecular imaging nn, nn () [10.1007/s00259-025-07504-8]
 GO

This record in other databases:

Please use a persistent id in citations: doi:

Abstract: Tebentafusp has emerged as the first systemic therapy to significantly prolong survival in treatment-naïve HLA-A*02:01 + patients with unresectable or metastatic uveal melanoma (mUM). Notably, a survival benefit has been observed even in the absence of radiographic response. This study aims to investigate the feasibility and prognostic value of artificial intelligence (AI)-assisted quantification and metabolic response assessment of [18F]FDG long axial field-of-view (LAFOV) PET/CT in mUM patients undergoing tebentafusp therapy.Fifteen patients with mUM treated with tebentafusp underwent [18F]FDG LAFOV PET/CT at baseline and 3 months post-treatment. Total metabolic tumor volume (TMTV) and total lesion glycolysis (TLG) were quantified using a deep learning-based segmentation tool On the RECOMIA platform. Metabolic response was assessed according to AI-assisted PERCIST 1.0 criteria. Associations between PET-derived parameters and overall survival (OS) were evaluated using Kaplan-Meier survival analysis.The median follow up (95% CI) was 14.1 months (12.9 months - not available). Automated TMTV and TLG measurements were successfully obtained in all patients. Elevated baseline TMTV and TLG were significantly associated with shorter OS (TMTV: 16.9 vs. 27.2 months; TLG: 16.9 vs. 27.2 months; p < 0.05). Similarly, higher TMTV and TLG at 3 months post-treatment predicted poorer survival outcomes (TMTV: 14.3 vs. 24.5 months; TLG: 14.3 vs. 24.5 months; p < 0.05). AI-assisted PERCIST response evaluation identified six patients with disease control (complete metabolic response, partial metabolic response, stable metabolic disease) and nine with progressive metabolic disease. A trend toward improved OS was observed in patients with disease control (24.5 vs. 14.6 months, p = 0.08). Circulating tumor DNA (ctDNA) levels based on GNAQ and GNA11 mutations were available in 8 patients; after 3 months Of tebentafusp treatment, 5 showed reduced Or stable ctDNA levels, and 3 showed an increase (median OS: 24.5 vs. 3.3 months; p = 0.13). Patients with increasing ctDNA levels exhibited significantly higher TMTV and TLG on follow-up imaging.AI-assisted whole-body quantification of [1⁸F]FDG PET/CT and PERCIST-based response assessment are feasible and hold prognostic significance in tebentafusp-treated mUM. TMTV and TLG may serve as non-invasive imaging biomarkers for risk stratification and treatment monitoring in this malignancy.

Keyword(s): Artificial intelligence ; CtDNA ; Deep learning ; Metastatic uveal melanoma ; PERCIST ; Tebentafusp ; Total lesion glycolysis (TLG) ; Total metabolic tumor volume (TMTV) ; Treatment response evaluation ; [18F]FDG LAFOV PET/CT

Classification:

Note: #EA:E060#LA:E060# / epub

Contributing Institute(s):
  1. E060 KKE Nuklearmedizin (E060)
  2. C060 Biostatistik (C060)
Research Program(s):
  1. 315 - Bildgebung und Radioonkologie (POF4-315) (POF4-315)

Appears in the scientific report 2025
Database coverage:
Medline ; Clarivate Analytics Master Journal List ; Current Contents - Clinical Medicine ; Current Contents - Life Sciences ; DEAL Springer ; DEAL Springer ; Ebsco Academic Search ; Essential Science Indicators ; IF >= 5 ; JCR ; SCOPUS ; Science Citation Index Expanded ; Web of Science Core Collection
Click to display QR Code for this record

The record appears in these collections:
Document types > Articles > Journal Article
Public records
Publications database

 Record created 2025-09-08, last modified 2025-09-09



Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)