Home > Publications database > Artificial intelligence-assisted assessment of metabolic response to tebentafusp in metastatic uveal melanoma: a long axial field-of-view [18F]FDG PET/CT study. > print |
001 | 304463 | ||
005 | 20250909114904.0 | ||
024 | 7 | _ | |a 10.1007/s00259-025-07504-8 |2 doi |
024 | 7 | _ | |a pmid:40913640 |2 pmid |
024 | 7 | _ | |a 1619-7070 |2 ISSN |
024 | 7 | _ | |a 1619-7089 |2 ISSN |
037 | _ | _ | |a DKFZ-2025-01856 |
041 | _ | _ | |a English |
082 | _ | _ | |a 610 |
100 | 1 | _ | |a Sachpekidis, Christos |0 P:(DE-He78)69d2d5247c019c2a2075502dc11bf0b2 |b 0 |e First author |u dkfz |
245 | _ | _ | |a Artificial intelligence-assisted assessment of metabolic response to tebentafusp in metastatic uveal melanoma: a long axial field-of-view [18F]FDG PET/CT study. |
260 | _ | _ | |a Heidelberg [u.a.] |c 2025 |b Springer-Verl. |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1757409426_22366 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
500 | _ | _ | |a #EA:E060#LA:E060# / epub |
520 | _ | _ | |a Tebentafusp has emerged as the first systemic therapy to significantly prolong survival in treatment-naïve HLA-A*02:01 + patients with unresectable or metastatic uveal melanoma (mUM). Notably, a survival benefit has been observed even in the absence of radiographic response. This study aims to investigate the feasibility and prognostic value of artificial intelligence (AI)-assisted quantification and metabolic response assessment of [18F]FDG long axial field-of-view (LAFOV) PET/CT in mUM patients undergoing tebentafusp therapy.Fifteen patients with mUM treated with tebentafusp underwent [18F]FDG LAFOV PET/CT at baseline and 3 months post-treatment. Total metabolic tumor volume (TMTV) and total lesion glycolysis (TLG) were quantified using a deep learning-based segmentation tool On the RECOMIA platform. Metabolic response was assessed according to AI-assisted PERCIST 1.0 criteria. Associations between PET-derived parameters and overall survival (OS) were evaluated using Kaplan-Meier survival analysis.The median follow up (95% CI) was 14.1 months (12.9 months - not available). Automated TMTV and TLG measurements were successfully obtained in all patients. Elevated baseline TMTV and TLG were significantly associated with shorter OS (TMTV: 16.9 vs. 27.2 months; TLG: 16.9 vs. 27.2 months; p < 0.05). Similarly, higher TMTV and TLG at 3 months post-treatment predicted poorer survival outcomes (TMTV: 14.3 vs. 24.5 months; TLG: 14.3 vs. 24.5 months; p < 0.05). AI-assisted PERCIST response evaluation identified six patients with disease control (complete metabolic response, partial metabolic response, stable metabolic disease) and nine with progressive metabolic disease. A trend toward improved OS was observed in patients with disease control (24.5 vs. 14.6 months, p = 0.08). Circulating tumor DNA (ctDNA) levels based on GNAQ and GNA11 mutations were available in 8 patients; after 3 months Of tebentafusp treatment, 5 showed reduced Or stable ctDNA levels, and 3 showed an increase (median OS: 24.5 vs. 3.3 months; p = 0.13). Patients with increasing ctDNA levels exhibited significantly higher TMTV and TLG on follow-up imaging.AI-assisted whole-body quantification of [1⁸F]FDG PET/CT and PERCIST-based response assessment are feasible and hold prognostic significance in tebentafusp-treated mUM. TMTV and TLG may serve as non-invasive imaging biomarkers for risk stratification and treatment monitoring in this malignancy. |
536 | _ | _ | |a 315 - Bildgebung und Radioonkologie (POF4-315) |0 G:(DE-HGF)POF4-315 |c POF4-315 |f POF IV |x 0 |
588 | _ | _ | |a Dataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de |
650 | _ | 7 | |a Artificial intelligence |2 Other |
650 | _ | 7 | |a CtDNA |2 Other |
650 | _ | 7 | |a Deep learning |2 Other |
650 | _ | 7 | |a Metastatic uveal melanoma |2 Other |
650 | _ | 7 | |a PERCIST |2 Other |
650 | _ | 7 | |a Tebentafusp |2 Other |
650 | _ | 7 | |a Total lesion glycolysis (TLG) |2 Other |
650 | _ | 7 | |a Total metabolic tumor volume (TMTV) |2 Other |
650 | _ | 7 | |a Treatment response evaluation |2 Other |
650 | _ | 7 | |a [18F]FDG LAFOV PET/CT |2 Other |
700 | 1 | _ | |a Machiraju, Devayani |b 1 |
700 | 1 | _ | |a Strauss, Dimitrios Stefanos |b 2 |
700 | 1 | _ | |a Pan, Leyun |0 P:(DE-He78)96ac0342a3ccf9553e3d4c9da9b821b0 |b 3 |u dkfz |
700 | 1 | _ | |a Kopp-Schneider, Annette |0 P:(DE-He78)bb6a7a70f976eb8df1769944bf913596 |b 4 |u dkfz |
700 | 1 | _ | |a Edenbrandt, Lars |b 5 |
700 | 1 | _ | |a Dimitrakopoulou-Strauss, Antonia |0 P:(DE-He78)b2df3652dfa3e19d5e96dfc53f44a992 |b 6 |e Last author |u dkfz |
700 | 1 | _ | |a Hassel, Jessica C |b 7 |
773 | _ | _ | |a 10.1007/s00259-025-07504-8 |0 PERI:(DE-600)2098375-X |p nn |t European journal of nuclear medicine and molecular imaging |v nn |y 2025 |x 1619-7070 |
909 | C | O | |o oai:inrepo02.dkfz.de:304463 |p VDB |
910 | 1 | _ | |a Deutsches Krebsforschungszentrum |0 I:(DE-588b)2036810-0 |k DKFZ |b 0 |6 P:(DE-He78)69d2d5247c019c2a2075502dc11bf0b2 |
910 | 1 | _ | |a Deutsches Krebsforschungszentrum |0 I:(DE-588b)2036810-0 |k DKFZ |b 3 |6 P:(DE-He78)96ac0342a3ccf9553e3d4c9da9b821b0 |
910 | 1 | _ | |a Deutsches Krebsforschungszentrum |0 I:(DE-588b)2036810-0 |k DKFZ |b 4 |6 P:(DE-He78)bb6a7a70f976eb8df1769944bf913596 |
910 | 1 | _ | |a Deutsches Krebsforschungszentrum |0 I:(DE-588b)2036810-0 |k DKFZ |b 6 |6 P:(DE-He78)b2df3652dfa3e19d5e96dfc53f44a992 |
913 | 1 | _ | |a DE-HGF |b Gesundheit |l Krebsforschung |1 G:(DE-HGF)POF4-310 |0 G:(DE-HGF)POF4-315 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-300 |4 G:(DE-HGF)POF |v Bildgebung und Radioonkologie |x 0 |
914 | 1 | _ | |y 2025 |
915 | _ | _ | |a DEAL Springer |0 StatID:(DE-HGF)3002 |2 StatID |d 2024-12-05 |w ger |
915 | _ | _ | |a DEAL Springer |0 StatID:(DE-HGF)3002 |2 StatID |d 2024-12-05 |w ger |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b EUR J NUCL MED MOL I : 2022 |d 2024-12-05 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2024-12-05 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2024-12-05 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0600 |2 StatID |b Ebsco Academic Search |d 2024-12-05 |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b ASC |d 2024-12-05 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2024-12-05 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2024-12-05 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1030 |2 StatID |b Current Contents - Life Sciences |d 2024-12-05 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1110 |2 StatID |b Current Contents - Clinical Medicine |d 2024-12-05 |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2024-12-05 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2024-12-05 |
915 | _ | _ | |a IF >= 5 |0 StatID:(DE-HGF)9905 |2 StatID |b EUR J NUCL MED MOL I : 2022 |d 2024-12-05 |
920 | 2 | _ | |0 I:(DE-He78)E060-20160331 |k E060 |l E060 KKE Nuklearmedizin |x 0 |
920 | 1 | _ | |0 I:(DE-He78)E060-20160331 |k E060 |l E060 KKE Nuklearmedizin |x 0 |
920 | 1 | _ | |0 I:(DE-He78)C060-20160331 |k C060 |l C060 Biostatistik |x 1 |
920 | 0 | _ | |0 I:(DE-He78)E060-20160331 |k E060 |l E060 KKE Nuklearmedizin |x 0 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a I:(DE-He78)E060-20160331 |
980 | _ | _ | |a I:(DE-He78)C060-20160331 |
980 | _ | _ | |a UNRESTRICTED |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|