Journal Article DKFZ-2025-02948

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Image-based explainable artificial intelligence accurately identifies myelodysplastic neoplasms beyond conventional signs of dysplasia.

 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;

2025
Springer Nature [London]

npj precision oncology nn, nn () [10.1038/s41698-025-01222-y]
 GO

Abstract: Cytomorphological assessment of bone marrow smears (BMS) is essential in the diagnosis of myelodysplastic neoplasms (MDS), yet manual evaluation is prone to inter-observer variability. We trained end-to-end deep learning models to distinguish between MDS, acute myeloid leukemia, and bone marrow donor BMS with high accuracy in internal tests and external validation. Occlusion sensitivity mapping revealed the high importance of nuclear structures beyond canonical dysplasia, demonstrating accurate, interpretable MDS detection without labor-intensive cell-level annotation.

Classification:

Note: epub

Contributing Institute(s):
  1. DKTK Koordinierungsstelle Dresden (DD01)
Research Program(s):
  1. 899 - ohne Topic (POF4-899) (POF4-899)

Appears in the scientific report 2025
Database coverage:
Medline ; Creative Commons Attribution CC BY (No Version) ; DOAJ ; Article Processing Charges ; BIOSIS Previews ; Biological Abstracts ; Clarivate Analytics Master Journal List ; Current Contents - Life Sciences ; DOAJ Seal ; Essential Science Indicators ; Fees ; IF >= 5 ; JCR ; SCOPUS ; Science Citation Index Expanded ; Web of Science Core Collection
Click to display QR Code for this record

The record appears in these collections:
Document types > Articles > Journal Article
Public records
Publications database

 Record created 2025-12-15, last modified 2025-12-16



Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)