Journal Article DKFZ-2026-00004

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
AutoPET Challenge on Fully Automated Lesion Segmentation in Oncologic PET/CT Imaging, Part 2: Domain Generalization.

 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;

2025
Soc. New York, NY

Journal of nuclear medicine nn, nn () [10.2967/jnumed.125.270260]
 GO

Abstract: This article reports the results of the second iteration of the autoPET challenge on automated lesion segmentation in whole-body PET/CT, held in conjunction with the 26th International Conference on Medical Image Computing and Computer Assisted Intervention in 2023. In contrast to the first autoPET challenge, which served as a proof of concept, this study investigates whether machine learning-based segmentation models trained on data from a single source can maintain performance across clinically relevant variations in PET/CT data, reflecting the demands of real-world deployment. Methods: A comprehensive biomedical segmentation challenge on PET/CT domain generalization was designed and conducted. Participants were tasked to train machine learning models on annotated whole-body 18F-FDG data (n = 1,014). These models were then evaluated on a test set of 200 samples from 5 clinically relevant domains, including variations in institutions, pathologies, and populations and a different tracer. Performance was measured in terms of average dice similarity coefficient, average false-positive volume, and average false-negative volume. The best-performing teams were awarded in 3 categories. Furthermore, a detailed analysis was conducted after the challenge, examining results across domains and unique instances, along with a ranking analysis. Results: Generalization from a single-source domain remains a significant challenge. Seventeen international teams successfully participated in the challenge. The best-performing team reached an average dice similarity coefficient of 0.5038, a mean false-positive volume of 87.8388 mL, and a mean false-negative volume of 8.4154 mL on the test set. nnU-Net was the most commonly used framework, with most participants using a 3-dimensional U-Net. Despite competitive in-domain results, out-of-domain performance deteriorated substantially, particularly on pediatric and prostate-specific membrane antigen data. Detailed error analysis revealed frequent false-positives due to physiologic uptake and decreased sensitivity in detecting small or low-uptake lesions. A majority-vote ensemble offered minimal performance gains, whereas an oracle ensemble indicates hypothetical gains. Ranking analysis showed no single team consistently outperformed all others across ranking schemes. Conclusion: The second autoPET challenge provides a comprehensive evaluation of the current state of automated PET/CT tumor segmentation, highlighting both progress and persistent challenges of single-source domain generalization and the need for diverse public datasets to enhance algorithm robustness.

Keyword(s): PET/CT ; biomedical image analysis challenge ; deep learning ; domain generalization ; oncology ; segmentation

Classification:

Note: epub

Contributing Institute(s):
  1. E230 Medizinische Bildverarbeitung (E230)
  2. DKTK Koordinierungsstelle Tübingen (TU01)
  3. DKTK Koordinierungsstelle Essen/Düsseldorf (ED01)
Research Program(s):
  1. 315 - Bildgebung und Radioonkologie (POF4-315) (POF4-315)

Appears in the scientific report 2025
Database coverage:
Medline ; BIOSIS Previews ; Biological Abstracts ; Clarivate Analytics Master Journal List ; Current Contents - Clinical Medicine ; Current Contents - Life Sciences ; Essential Science Indicators ; IF >= 5 ; JCR ; SCOPUS ; Science Citation Index Expanded ; Web of Science Core Collection
Click to display QR Code for this record

The record appears in these collections:
Document types > Articles > Journal Article
Public records
Publications database

 Record created 2026-01-05, last modified 2026-01-06



Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)