000308499 001__ 308499
000308499 005__ 20260119120510.0
000308499 0247_ $$2doi$$a10.1038/s41597-025-06526-z
000308499 0247_ $$2pmid$$apmid:41540078
000308499 0247_ $$2ISSN$$a2052-4436
000308499 0247_ $$2ISSN$$a2052-4463
000308499 037__ $$aDKFZ-2026-00139
000308499 041__ $$aEnglish
000308499 082__ $$a500
000308499 1001_ $$0P:(DE-He78)938f93a4dab6d6dffd5d4fbe92cddf83$$aHansen, Pascal$$b0$$eFirst author$$udkfz
000308499 245__ $$aImitateCholec: A Multimodal Dataset for Long-Horizon Imitation Learning in Robotic Cholecystectomy.
000308499 260__ $$aLondon$$bNature Publ. Group$$c2026
000308499 3367_ $$2DRIVER$$aarticle
000308499 3367_ $$2DataCite$$aOutput Types/Journal article
000308499 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1768817685_2025302
000308499 3367_ $$2BibTeX$$aARTICLE
000308499 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000308499 3367_ $$00$$2EndNote$$aJournal Article
000308499 500__ $$a#EA:315# / epub
000308499 520__ $$aThe growing global shortage of skilled surgeons underscores the need for intelligent, assistive technologies in the operating room. To address this challenge, we introduce ImitateCholec, a publicly available dataset specifically designed to advance autonomous robotic systems during the critical clipping and cutting phase of laparoscopic cholecystectomy. The dataset comprises over 18,000 demonstrations from 34 ex vivo porcine cholecystectomies, totaling approximately 20 hours of data. Each clipping and cutting phase recorded in the dataset is segmented into 17 distinct surgical tasks. ImitateCholec uniquely integrates endoscopic videos captured from multiple camera perspectives with comprehensive kinematic data acquired through the da Vinci Research Kit. Both optimal demonstration executions and recovery maneuvers were systematically recorded, enabling the training of imitation learning models capable of robustly addressing real-world surgical variability. Primarily, ImitateCholec facilitates imitation learning for long-horizon surgical workflow execution, significantly advancing the development of autonomous robotic systems toward achieving phase-level autonomy and, ultimately, full procedural autonomy. Additional supported applications include surgical workflow modeling, error recognition, and surgical tool pose estimation.
000308499 536__ $$0G:(DE-HGF)POF4-315$$a315 - Bildgebung und Radioonkologie (POF4-315)$$cPOF4-315$$fPOF IV$$x0
000308499 588__ $$aDataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de
000308499 7001_ $$aKim, Ji Woong Brian$$b1
000308499 7001_ $$aGoldenberg, Antony$$b2
000308499 7001_ $$aChen, Juo Tung$$b3
000308499 7001_ $$aLi, Yuanzhe Amos$$b4
000308499 7001_ $$00000-0003-3856-2095$$aDeguet, Anton$$b5
000308499 7001_ $$aWhite, Brandon$$b6
000308499 7001_ $$aTsai, De Ru$$b7
000308499 7001_ $$aCha, Richard$$b8
000308499 7001_ $$aJopling, Jeffrey$$b9
000308499 7001_ $$aScheikl, Paul Maria$$b10
000308499 7001_ $$aKrieger, Axel$$b11
000308499 773__ $$0PERI:(DE-600)2775191-0$$a10.1038/s41597-025-06526-z$$pnn$$tScientific data$$vnn$$x2052-4436$$y2026
000308499 909CO $$ooai:inrepo02.dkfz.de:308499$$pVDB
000308499 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)938f93a4dab6d6dffd5d4fbe92cddf83$$aDeutsches Krebsforschungszentrum$$b0$$kDKFZ
000308499 9131_ $$0G:(DE-HGF)POF4-315$$1G:(DE-HGF)POF4-310$$2G:(DE-HGF)POF4-300$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lKrebsforschung$$vBildgebung und Radioonkologie$$x0
000308499 9141_ $$y2026
000308499 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bSCI DATA : 2022$$d2024-12-09
000308499 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-09
000308499 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-09
000308499 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2024-04-10T15:44:52Z
000308499 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2024-04-10T15:44:52Z
000308499 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Anonymous peer review$$d2024-04-10T15:44:52Z
000308499 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-09
000308499 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2024-12-09
000308499 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2024-12-09
000308499 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2024-12-09
000308499 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2024-12-09
000308499 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-09
000308499 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bSCI DATA : 2022$$d2024-12-09
000308499 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2024-12-09
000308499 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2024-12-09
000308499 9200_ $$0I:(DE-He78)E130-20160331$$kE130$$lE130 Intelligente Medizinische Systeme$$x0
000308499 9201_ $$0I:(DE-He78)E130-20160331$$kE130$$lE130 Intelligente Medizinische Systeme$$x0
000308499 980__ $$ajournal
000308499 980__ $$aVDB
000308499 980__ $$aI:(DE-He78)E130-20160331
000308499 980__ $$aUNRESTRICTED