| Home > Publications database > Click. Screen. Degrade. A Miniaturized D2B Workflow for Rapid PROTAC Discovery. |
| Journal Article | DKFZ-2026-00198 |
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
2026
ACS
Washington, DC
Abstract: Targeted protein degradation is one of the fastest developing fields in medicinal chemistry and chemical biology. Despite significant development in assay technologies and inhibitor discovery, the development of PROTACs remains a challenging endeavor since rational design approaches remain widely elusive. Our workflow eliminates the rate-limiting step of classic synthesis, namely compound purification, and pairs it with high-throughput, semi-automated plate-based synthesis, and direct cellular assay evaluation. We applied this direct-to-biology approach to four diverse targets, demonstrating the general applicability of this technology. PROTAC synthesis was realized by using the highly efficient copper-catalyzed azide-alkyne cycloaddition reaction. This simplified reaction setup enabled synthesis in the nanomole scale with reaction volumes as low as 5 μL. The high-throughput strategy allows hundreds of PROTACs to be synthesized and evaluated within a few days, facilitating comprehensive assessment of target degradability, rapid hit identification, and selection of the most suitable E3 ligase for degrader development.
|
The record appears in these collections: |