Journal Article DKFZ-2017-02095

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Experimental verification of ion stopping power prediction from dual energy CT data in tissue surrogates.

 ;  ;  ;  ;  ;

2014
IOP Publ. Bristol

Physics in medicine and biology 59(1), 83 - 96 () [10.1088/0031-9155/59/1/83]
 GO

This record in other databases:  

Please use a persistent id in citations: doi:

Abstract: We present an experimental verification of stopping-power-ratio (SPR) prediction from dual energy CT (DECT) with potential use for dose planning in proton and ion therapy. The approach is based on DECT images converted to electron density relative to water ϱe/ϱe, w and effective atomic number Zeff. To establish a parameterization of the I-value by Zeff, 71 tabulated tissue compositions were used. For the experimental assessment of the method we scanned 20 materials (tissue surrogates, polymers, aluminum, titanium) at 80/140Sn kVp and 100/140Sn kVp (Sn: additional tin filtration) and computed the ϱe/ϱe, w and Zeff with a purely image based algorithm. Thereby, we found that ϱe/ϱe, w (Zeff) could be determined with an accuracy of 0.4% (1.7%) for the tissue surrogates with known elemental compositions. SPRs were predicted from DECT images for all 20 materials using the presented approach and were compared to measured water-equivalent path lengths (closely related to SPR). For the tissue surrogates the presented DECT approach was found to predict the experimental values within 0.6%, for aluminum and titanium within an accuracy of 1.7% and 9.4% (from 16-bit reconstructed DECT images).

Keyword(s): Polymethyl Methacrylate ; Aluminum ; Titanium

Classification:

Contributing Institute(s):
  1. Medizinische Physik in der Strahlentherapie (E040)
Research Program(s):
  1. 315 - Imaging and radiooncology (POF3-315) (POF3-315)

Appears in the scientific report 2014
Database coverage:
Medline ; BIOSIS Previews ; Current Contents - Life Sciences ; Ebsco Academic Search ; IF < 5 ; JCR ; National-Konsortium ; NationallizenzNationallizenz ; SCOPUS ; Science Citation Index ; Science Citation Index Expanded ; Thomson Reuters Master Journal List ; Web of Science Core Collection
Click to display QR Code for this record

The record appears in these collections:
Document types > Articles > Journal Article
Institute Collections > E040
Public records
Publications database

 Record created 2017-09-13, last modified 2024-02-28



Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)