Journal Article DKFZ-2017-02533

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Genetic delivery of an immunoRNase by an oncolytic adenovirus enhances anticancer activity.

 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;

2015
Wiley-Liss Bognor Regis

International journal of cancer 136(9), 2228 - 2240 () [10.1002/ijc.29258]
 GO

This record in other databases:  

Please use a persistent id in citations: doi:

Abstract: Antibody therapy of solid cancers is well established, but suffers from unsatisfactory tumor penetration of large immunoglobulins or from low serum retention of antibody fragments. Oncolytic viruses are in advanced clinical development showing excellent safety, but suboptimal potency due to limited virus spread within tumors. Here, by developing an immunoRNase-encoding oncolytic adenovirus, we combine viral oncolysis with intratumoral genetic delivery of a small antibody-fusion protein for targeted bystander killing of tumor cells (viro-antibody therapy). Specifically, we explore genetic delivery of a small immunoRNase consisting of an EGFR-binding scFv antibody fragment fused to the RNase Onconase (ONC(EGFR)) that induces tumor cell death by RNA degradation after cellular internalization. Onconase is a frog RNase that combines lack of immunogenicity and excellent safety in patients with high tumor killing potency due to its resistance to the human cytosolic RNase inhibitor. We show that ONC(EGFR) expression by oncolytic adenoviruses is feasible with an optimized, replication-dependent gene expression strategy. Virus-encoded ONC(EGFR) induces potent and EGFR-dependent bystander killing of tumor cells. Importantly, the ONC(EGFR)-encoding oncolytic adenovirus showed dramatically increased cytotoxicity specifically to EGFR-positive tumor cells in vitro and significantly enhanced therapeutic activity in a mouse xenograft tumor model. The latter demonstrates that ONC(EGFR) is expressed at levels sufficient to trigger tumor cell killing in vivo. The established ONC(EGFR)-encoding oncolytic adenovirus represents a novel agent for treatment of EGFR-positive tumors. This viro-antibody therapy platform can be further developed for targeted/personalized cancer therapy by exploiting antibody diversity to target further established or emerging tumor markers or combinations thereof.

Keyword(s): Antibodies, Viral ; Antineoplastic Agents ; RNA ; EGFR protein, human ; Receptor, Epidermal Growth Factor ; Ribonucleases

Classification:

Contributing Institute(s):
  1. Onkolytische Adenoviren (F110)
  2. Angewandte Tumor-Immunität (D120)
  3. Molekulare Grundlagen von HNO-Tumoren (G405)
  4. KKE Molekulare Onkologie solider Tumoren (G360)
Research Program(s):
  1. 316 - Infections and cancer (POF3-316) (POF3-316)

Appears in the scientific report 2015
Database coverage:
Medline ; BIOSIS Previews ; Current Contents - Life Sciences ; IF >= 5 ; JCR ; NCBI Molecular Biology Database ; NationallizenzNationallizenz ; SCOPUS ; Science Citation Index ; Science Citation Index Expanded ; Thomson Reuters Master Journal List ; Web of Science Core Collection
Click to display QR Code for this record

The record appears in these collections:
Document types > Articles > Journal Article
Institute Collections > D120
Public records
Publications database

 Record created 2017-09-18, last modified 2024-02-28



Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)