Journal Article DKFZ-2019-00500

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Actively personalized vaccination trial for newly diagnosed glioblastoma.

 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;

2019
Nature Publ. Group52462 London [u.a.]

Nature <London> 565(7738), 240 - 245 () [10.1038/s41586-018-0810-y]
 GO

This record in other databases:  

Please use a persistent id in citations: doi:

Abstract: Patients with glioblastoma currently do not sufficiently benefit from recent breakthroughs in cancer treatment that use checkpoint inhibitors1,2. For treatments using checkpoint inhibitors to be successful, a high mutational load and responses to neoepitopes are thought to be essential3. There is limited intratumoural infiltration of immune cells4 in glioblastoma and these tumours contain only 30-50 non-synonymous mutations5. Exploitation of the full repertoire of tumour antigens-that is, both unmutated antigens and neoepitopes-may offer more effective immunotherapies, especially for tumours with a low mutational load. Here, in the phase I trial GAPVAC-101 of the Glioma Actively Personalized Vaccine Consortium (GAPVAC), we integrated highly individualized vaccinations with both types of tumour antigens into standard care to optimally exploit the limited target space for patients with newly diagnosed glioblastoma. Fifteen patients with glioblastomas positive for human leukocyte antigen (HLA)-A*02:01 or HLA-A*24:02 were treated with a vaccine (APVAC1) derived from a premanufactured library of unmutated antigens followed by treatment with APVAC2, which preferentially targeted neoepitopes. Personalization was based on mutations and analyses of the transcriptomes and immunopeptidomes of the individual tumours. The GAPVAC approach was feasible and vaccines that had poly-ICLC (polyriboinosinic-polyribocytidylic acid-poly-L-lysine carboxymethylcellulose) and granulocyte-macrophage colony-stimulating factor as adjuvants displayed favourable safety and strong immunogenicity. Unmutated APVAC1 antigens elicited sustained responses of central memory CD8+ T cells. APVAC2 induced predominantly CD4+ T cell responses of T helper 1 type against predicted neoepitopes.

Classification:

Contributing Institute(s):
  1. DKTK Tübingen (L801)
  2. KKE Neuroimmunologie und Hirntumorimmunologie (D170)
  3. KKE Neuropathologie (B300)
  4. KKE Neuroonkologie (B320)
  5. DKTK Heidelberg (L101)
  6. DKTK Frankfurt (L501)
Research Program(s):
  1. 312 - Functional and structural genomics (POF3-312) (POF3-312)

Appears in the scientific report 2019
Database coverage:
Medline ; BIOSIS Previews ; Clarivate Analytics Master Journal List ; Current Contents - Agriculture, Biology and Environmental Sciences ; Current Contents - Life Sciences ; Current Contents - Physical, Chemical and Earth Sciences ; Ebsco Academic Search ; IF >= 40 ; JCR ; NCBI Molecular Biology Database ; NationallizenzNationallizenz ; SCOPUS ; Science Citation Index ; Science Citation Index Expanded ; Web of Science Core Collection ; Zoological Record
Click to display QR Code for this record

The record appears in these collections:
Document types > Articles > Journal Article
Institute Collections > D170
Public records
Publications database

 Record created 2019-02-25, last modified 2024-02-29



Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)