Journal Article DKFZ-2020-01310

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
A scintillator-based range telescope for particle therapy.

 ;  ;  ;  ;  ;  ;  ;

2020
IOP Publ. Bristol

Physics in medicine and biology 65(16), 165001 () [10.1088/1361-6560/ab9415]
 GO

This record in other databases:  

Please use a persistent id in citations: doi:

Abstract: The commissioning and operation of a particle therapy centre requires an extensive set of detectors for measuring various parameters of the treatment beam. Among the key devices are detectors for beam range quality assurance. In this work, a novel range telescope based on plastic scintillator and read out by a large-scale CMOS sensor is presented. The detector is made of a stack of 49 plastic scintillator sheets with a thickness of 2--3~mm and an active area of $100\times100$~mm$^2$, resulting in a total physical stack thickness of 124.2~mm. This compact design avoids optical artefacts that are common in other scintillation detectors. The range of a proton beam is reconstructed using a novel Bragg curve model that incorporates scintillator quenching effects. Measurements to characterise the performance of the detector were carried out at the Heidelberger Ionenstrahl-Therapiezentrum (HIT, Heidelberg, GER) and the Clatterbridge Cancer Centre (CCC, Bebington, UK). The maximum difference between the measured range and the reference range was found to be 0.41~mm at a proton beam range of 310~mm and was dominated by detector alignment uncertainties. With the new detector prototype, the water-equivalent thickness of PMMA degrader blocks has been reconstructed within $\pm0.1$~mm. An evaluation of the radiation hardness proves that the range reconstruction algorithm is robust following the deposition of 6,300~Gy peak dose into the detector. Furthermore, small variations in the beam spot size and transverse beam position are shown to have a negligible effect on the range reconstruction accuracy. The potential for range measurements of ion beams is also investigated.

Classification:

Note: 2020 Aug 19;65(16):165001

Contributing Institute(s):
  1. E041 Medizinische Physik in der Radioonkologie (E041)
Research Program(s):
  1. 315 - Imaging and radiooncology (POF3-315) (POF3-315)

Appears in the scientific report 2020
Database coverage:
Medline ; BIOSIS Previews ; Biological Abstracts ; Clarivate Analytics Master Journal List ; Current Contents - Life Sciences ; Ebsco Academic Search ; Essential Science Indicators ; IF < 5 ; JCR ; National-Konsortium ; NationallizenzNationallizenz ; SCOPUS ; Science Citation Index ; Science Citation Index Expanded ; Web of Science Core Collection
Click to display QR Code for this record

The record appears in these collections:
Document types > Articles > Journal Article
Public records
Publications database

 Record created 2020-07-10, last modified 2024-02-29



Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)