Journal Article DKFZ-2025-01121

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Dermatologist-like explainable AI enhances melanoma diagnosis accuracy: eye-tracking study.

 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;

2025
Springer Nature [London]

Nature Communications 16(1), 4739 () [10.1038/s41467-025-59532-5]
 GO

This record in other databases:  

Please use a persistent id in citations: doi:

Abstract: Artificial intelligence (AI) systems substantially improve dermatologists' diagnostic accuracy for melanoma, with explainable AI (XAI) systems further enhancing their confidence and trust in AI-driven decisions. Despite these advancements, there remains a critical need for objective evaluation of how dermatologists engage with both AI and XAI tools. In this study, 76 dermatologists participate in a reader study, diagnosing 16 dermoscopic images of melanomas and nevi using an XAI system that provides detailed, domain-specific explanations, while eye-tracking technology assesses their interactions. Diagnostic performance is compared with that of a standard AI system lacking explanatory features. Here we show that XAI significantly improves dermatologists' diagnostic balanced accuracy by 2.8 percentage points compared to standard AI. Moreover, diagnostic disagreements with AI/XAI systems and complex lesions are associated with elevated cognitive load, as evidenced by increased ocular fixations. These insights have significant implications for the design of AI/XAI tools for visual tasks in dermatology and the broader development of XAI in medical diagnostics.

Keyword(s): Melanoma: diagnosis (MeSH) ; Melanoma: diagnostic imaging (MeSH) ; Humans (MeSH) ; Artificial Intelligence (MeSH) ; Eye-Tracking Technology (MeSH) ; Dermatologists (MeSH) ; Skin Neoplasms: diagnosis (MeSH) ; Skin Neoplasms: diagnostic imaging (MeSH) ; Female (MeSH) ; Dermoscopy: methods (MeSH) ; Male (MeSH) ; Nevus: diagnosis (MeSH) ; Nevus: diagnostic imaging (MeSH) ; Adult (MeSH) ; Middle Aged (MeSH)

Classification:

Note: #EA:C140#LA:C140#

Contributing Institute(s):
  1. Digitale Prävention, Diagnostik und Therapiesteuerung (C140)
  2. C060 Biostatistik (C060)
  3. KKE Dermatoonkologie (A370)
Research Program(s):
  1. 313 - Krebsrisikofaktoren und Prävention (POF4-313) (POF4-313)

Appears in the scientific report 2025
Database coverage:
Medline ; Creative Commons Attribution CC BY (No Version) ; DOAJ ; Article Processing Charges ; BIOSIS Previews ; Biological Abstracts ; Clarivate Analytics Master Journal List ; Current Contents - Agriculture, Biology and Environmental Sciences ; Current Contents - Life Sciences ; Current Contents - Physical, Chemical and Earth Sciences ; DOAJ Seal ; Essential Science Indicators ; Fees ; IF >= 15 ; JCR ; SCOPUS ; Science Citation Index Expanded ; Web of Science Core Collection ; Zoological Record
Click to display QR Code for this record

The record appears in these collections:
Document types > Articles > Journal Article
Public records
Publications database

 Record created 2025-05-30, last modified 2025-06-01


Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)