Journal Article DKFZ-2025-02297

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
u-LINNDA: A protocol for user-optimized lymphoma identification through neural network detection aid.

 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;

2025
Cell Press Cambridge, MA

STAR Protocols 6(4), 104176 () [10.1016/j.xpro.2025.104176]
 GO

Abstract: Glioblastoma (GBM) and primary central nervous system lymphoma (PCNSL) are aggressive brain tumors that require neurosurgical treatment. For targeted treatment, biopsy and histopathological identification of the tumor entity are necessary. Here, we present a protocol for diagnosing PCNSL using a convolutional neural network (CNN)-based algorithm. We describe steps for installing the u-LINNDA (user-optimized lymphoma identification through neural network detection aid) algorithm, data preparation and preprocessing, and predicting tumor entities using u-LINNDA. We then detail procedures for predicting tumor identity and inspecting the u-LINNDA report.

Keyword(s): Bioinformatics ; Cancer ; Computer sciences ; Health Sciences ; Neuroscience

Classification:

Note: #EA:E230#LA:E230#

Contributing Institute(s):
  1. E230 Medizinische Bildverarbeitung (E230)
  2. DKTK HD zentral (HD01)
Research Program(s):
  1. 315 - Bildgebung und Radioonkologie (POF4-315) (POF4-315)

Appears in the scientific report 2025
Database coverage:
Medline ; DOAJ ; Article Processing Charges ; BIOSIS Previews ; Biological Abstracts ; Clarivate Analytics Master Journal List ; DOAJ Seal ; Emerging Sources Citation Index ; Fees ; SCOPUS ; Web of Science Core Collection
Click to display QR Code for this record

The record appears in these collections:
Document types > Articles > Journal Article
Public records
Publications database

 Record created 2025-11-07, last modified 2025-11-10



Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)