Home > Publications database > Epigenetic regulation of diacylglycerol kinase alpha promotes radiation-induced fibrosis. |
Journal Article | DKFZ-2017-05925 |
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
2016
Nature Publishing Group
London
This record in other databases:
Please use a persistent id in citations: doi:10.1038/ncomms10893
Abstract: Radiotherapy is a fundamental part of cancer treatment but its use is limited by the onset of late adverse effects in the normal tissue, especially radiation-induced fibrosis. Since the molecular causes for fibrosis are largely unknown, we analyse if epigenetic regulation might explain inter-individual differences in fibrosis risk. DNA methylation profiling of dermal fibroblasts obtained from breast cancer patients prior to irradiation identifies differences associated with fibrosis. One region is characterized as a differentially methylated enhancer of diacylglycerol kinase alpha (DGKA). Decreased DNA methylation at this enhancer enables recruitment of the profibrotic transcription factor early growth response 1 (EGR1) and facilitates radiation-induced DGKA transcription in cells from patients later developing fibrosis. Conversely, inhibition of DGKA has pronounced effects on diacylglycerol-mediated lipid homeostasis and reduces profibrotic fibroblast activation. Collectively, DGKA is an epigenetically deregulated kinase involved in radiation response and may serve as a marker and therapeutic target for personalized radiotherapy.
Keyword(s): EGR1 protein, human ; Early Growth Response Protein 1 ; RNA, Messenger ; Diacylglycerol Kinase
![]() |
The record appears in these collections: |