Journal Article (Review Article) DKFZ-2022-02497

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Metabolic regulation of immune responses to cancer.

 ;  ;  ;  ;

2022
Medical Univ. Cancer Inst. & Hospital Tianjin

Cancer biology & medicine 29(11), 1528-1542 () [10.20892/j.issn.2095-3941.2022.0381]
 GO

This record in other databases:  

Please use a persistent id in citations: doi:  doi:  doi:

Abstract: The tumor microenvironment is an ecosystem composed of multiple types of cells, such as tumor cells, immune cells, and cancer-associated fibroblasts. Cancer cells grow faster than non-cancerous cells and consume larger amounts of nutrients. The rapid growth characteristic of cancer cells fundamentally alters nutrient availability in the tumor microenvironment and results in reprogramming of immune cell metabolic pathways. Accumulating evidence suggests that cellular metabolism of nutrients, such as lipids and amino acids, beyond being essential to meet the bioenergetic and biosynthetic demands of immune cells, also regulates a broad spectrum of cellular signal transduction, and influences immune cell survival, differentiation, and anti-tumor effector function. The cancer immunometabolism research field is rapidly evolving, and exciting new discoveries are reported in high-profile journals nearly weekly. Therefore, all new findings in this field cannot be summarized within this short review. Instead, this review is intended to provide a brief introduction to this rapidly developing research field, with a focus on the metabolism of two classes of important nutrients-lipids and amino acids-in immune cells. We highlight recent research on the roles of lipids and amino acids in regulating the metabolic fitness and immunological functions of T cells, macrophages, and natural killer cells in the tumor microenvironment. Furthermore, we discuss the possibility of 'editing' metabolic pathways in immune cells to act synergistically with currently available immunotherapies in enhancing anti-tumor immune responses.

Keyword(s): Lipids ; NK cells ; T cells ; amino acids ; anti-tumor immunity ; cancer ; immunometabolism ; metabolism

Classification:

Note: #EA:D192#LA:D192# / 2022 Oct 24;19(11):1528-1542 / HI-TRON

Contributing Institute(s):
  1. T-Zell-Metabolismus (D192)
Research Program(s):
  1. 314 - Immunologie und Krebs (POF4-314) (POF4-314)

Appears in the scientific report 2022
Database coverage:
Medline ; Creative Commons Attribution-NonCommercial CC BY-NC (No Version) ; DOAJ ; Article Processing Charges ; BIOSIS Previews ; Biological Abstracts ; Clarivate Analytics Master Journal List ; DOAJ Seal ; Ebsco Academic Search ; Essential Science Indicators ; Fees ; IF >= 5 ; JCR ; SCOPUS ; Science Citation Index Expanded ; Web of Science Core Collection
Click to display QR Code for this record

The record appears in these collections:
Document types > Articles > Journal Article
Public records
Publications database

 Record created 2022-10-24, last modified 2024-02-29



Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)