Journal Article DKFZ-2025-00553

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Reproducibility of tailored and universal nonselective excitation pulses at 7 T for human cardiac MRI: A 3-year and an interday study.

 ;  ;  ;  ;  ;

2025
Wiley-Liss New York, NY [u.a.]

Magnetic resonance in medicine 94(2), 588-601 () [10.1002/mrm.30495]
 GO

This record in other databases:

Please use a persistent id in citations: doi:

Abstract: Ultrahigh-field (UHF; ≥7 T) MRI is challenging due to spatially heterogeneous B1 + profiles. This longitudinal study evaluates the reproducibility of three parallel-transmission excitation strategies to enable UHF cardiac MRI: vendor-supplied radiofrequency (RF) shim, subject-tailored kT-points pulses (TPs), and universal kT-points pulses (UPs).Six healthy subjects underwent 7 T MRI scans performed by different MR operators using a 32-element parallel-transmission body array at four time points over 3 years. A single UP was computed and applied to all subjects. TPs were computed individually for each scan and organized into four configurations. Each configuration was applied to all scans from each subject to analyze intrasubject variability. Reproducibility was assessed by comparing the coefficient of variation (CV) of simulated flip angles (FAs) within the heart volume across scan sessions.TPs designed for a specific scan session yielded lower CVs (2-fold reduction) than UP. Applying TPs to other scan sessions of the same subject, however, resulted in approximately 40% higher CVs and lower FA uniformity compared with the UP. On average, the UP consistently achieved the most reproducible results across inter-year, inter-day, and same-operator studies, with CVs of approximately 12%.Although TPs showed advantages when tailored for a specific target volume, they struggled with long-term consistency and required lengthy calibration. The precomputed UP kT-points pulses proved to be the most consistent across all scans acquired in the 3 years by different operators, minimizing CV-data dispersion and maintaining FA uniformity.

Keyword(s): 7 Tesla ; cardiac MRI ; parallel transmission ; universal pulse

Classification:

Note: 2025 Aug;94(2):588-601

Contributing Institute(s):
  1. E020 Med. Physik in der Radiologie (E020)
Research Program(s):
  1. 315 - Bildgebung und Radioonkologie (POF4-315) (POF4-315)

Appears in the scientific report 2025
Database coverage:
Medline ; BIOSIS Previews ; Biological Abstracts ; Clarivate Analytics Master Journal List ; Current Contents - Clinical Medicine ; Current Contents - Life Sciences ; DEAL Wiley ; Essential Science Indicators ; NationallizenzNationallizenz ; SCOPUS ; Science Citation Index Expanded ; Web of Science Core Collection
Click to display QR Code for this record

The record appears in these collections:
Document types > Articles > Journal Article
Institute Collections > E020
Public records
Publications database

 Record created 2025-03-14, last modified 2025-06-06



Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)