Home > Publications database > Mitochondrial NNT Promotes Diastolic Dysfunction in Cardiometabolic HFpEF. |
Journal Article | DKFZ-2025-00957 |
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
2025
Assoc.
New York, NY
This record in other databases:
Please use a persistent id in citations: doi:10.1161/CIRCRESAHA.125.326154
Abstract: Clinical management of heart failure with preserved ejection fraction (HFpEF) is hindered by a lack of disease-modifying therapies capable of altering its distinct pathophysiology. Despite the widespread implementation of a 2-hit model of cardiometabolic HFpEF to inform precision therapy, which utilizes ad libitum high-fat diet and 0.5% N(ω)-nitro-L-arginine methyl ester, we observe that C57BL6/J mice exhibit less cardiac diastolic dysfunction in response to high-fat diet and 0.5% N(ω)-nitro-L-arginine methyl ester.Genetic strain-specific single-nucleus transcriptomic analysis identified disease-relevant genes that enrich oxidative metabolic pathways within cardiomyocytes. Because C57BL/6J mice are known to harbor a loss-of-function mutation affecting the inner mitochondrial membrane protein Nnt (nicotinamide nucleotide transhydrogenase), we used an isogenic model of Nnt loss-of-function to determine whether intact NNT is necessary for the pathological cardiac manifestations of high-fat diet and 0.5% N(ω)-nitro-L-arginine methyl ester. Twelve-week-old mice cross-bred to isolate wild-type (Nnt+/+) or loss-of-function (Nnt-/-) Nnt in the C57BL/6N background were challenged with high-fat diet and 0.5% N(ω)-nitro-L-arginine methyl ester for 9 weeks (n=6-10).Nnt+/+ mice exhibited impaired ventricular diastolic relaxation and pathological remodeling, as assessed via E/e' (42.8 versus 21.5, P=1.2×10-10), E/A (2.3 versus 1.4, P=4.1×10-2), diastolic stiffness (0.09 versus 0.04 mm Hg/μL, P=5.1×10-3), and myocardial fibrosis (P=2.3×10-2). Liquid chromatography and mass spectroscopy exposed a 40.0% reduction in NAD+ (P=8.4×10-3) and a 38.8% reduction in glutathione:GSSG (P=2.6×10-2) among Nnt+/+ mice after high-fat diet and 0.5% N(ω)-nitro-L-arginine methyl ester feeding. Using single-nucleus ligand-receptor analysis, we implicate Fgf1 (fibroblast growth factor 1) as a putative NNT-dependent mediator of cardiomyocyte-to-fibroblast signaling of myocardial fibrosis.Together, these findings underscore the pivotal role of mitochondrial dysfunction in HFpEF pathogenesis, implicating both NNT and Fgf1 as novel therapeutic targets.
Keyword(s): NG-nitroarginine methyl ester ; fibrosis ; genetic therapy ; heart failure ; oxidative stress
![]() |
The record appears in these collections: |